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Objective: Propose a new framework for metric learning using only positive constraints between examples and a priori defined virtual points.

Metric Learning: Main Idea

Learning how to compare objects: learn a new space where some con-
straints are fulfilled, e.g. move closer circles of the same color (class)
and keep far away circles of different colors (classes).

Learning step

Mahalanobis-like Distance (with M a PSD matrix):

dM(x,x′) =
√

(x− x′)TM(x− x′)

=
√

(LTx− LTx′)T (LTx− LTx′)

=
√

xTMx + x′TMx′ − 2xTMx′.

Metric Learning: Classical Approach

Classical approaches in metric learning use two kind of constraints:

• Similarity constraints: the goal is to bring closer similar examples,
e.g. examples of the same class.

• Dissimilarity constraints: the goal is to push far away dissimilar
examples, e.g. examples of different classes.

It induces a quadratic number of constraints: O(n2) (e.g. [JWZ09]).

Metric Learning: Virtual Points Approach

In our virtual points approach we only use similarity constraints. How-
ever instead of pairing examples with each other, we associate each
example to a given virtual point.

It induces a linear number of constraints: O(n).

Formulation
Let S={(xi, yi)}ni=1⊂(X×Y)n be a set of examples. Let fv : X×Y→V
where V ⊆ Rd′ be the function which associates each example to a
virtual point. We consider the learning set Sv = {(xi,vi)}ni=1 ⊂ X ×V.

Let X = (x1, . . . ,xn)
T

and V = (v1, . . . ,vn)
T

, we learn L such that
M = LLT with the following optimization problem:

min
L
R̂(L) + λ‖L‖2F = min

L

1

n
‖XL −V‖2F + λ‖L‖2F . (1)

Using the closed form solution for L, we get:

M = LLT = XT
(
XXT + λnI

)−1
VVT

(
XXT + λnI

)−1
X. (2)

Let KX = φ(X)φ(X)T , we can kernelize our approach as:

d2MK
(φ(x), φ(x′)) = φ(x)TMKφ(x) + φ(x′)

T
MKφ(x

′)− 2φ(x)TMKφ(x
′)

with MK = φ(X)T (KX + λnI)
−1

VVT (KX + λnI)
−1
φ(X).

Theoretical Analysis: Bounding the true risk of [JWZ09] by the empirical risk of our approach

Theorem 1. Let D be a distribution over X × Y. Let V ⊂ Rd′ be a finite set of virtual points and fv is defined as fv(xi, yi) = vi, vi ∈ V. Let
‖v‖2 ≤ Cv for any v ∈ V and ‖x‖2 ≤ Cx for any x ∈ X . Let γ1 = 2 maxxk,xl,ykl=1 d

2(vk,vl) and γ−1 = 1
2 minxk,xl,ykl=−1 d

2(vk,vl), we have:

E(xi,yi)∼D,(xj ,yj)∼D
[
yij(d

2(LTxi,L
Txj)− γyij )

]
+
≤ 8

R̂(L) +
8C2

vC
2
x

λn

(
1 +

Cx√
λ

)2

+

((
16C2

x

λ
+ 1

)
C2

v

(
1 +

Cx√
λ

)2
)√

ln 1
δ

2n
)

 .

with yij = 1 for examples of the same class and−1 otherwise. Note that the margins are expressed w.r.t. the distances between virtual points.

Virtual Points Selection

Virtual Points

Optimal Transport Based Approach
This is a two steps approach:
• Selection of several landmarks in the

training set using a diversity criteria
[KJ11].

• Application of Optimal Transport with
regularization [CFT14] between the
training set and the landmarks. The
points obtained after transport are
used as virtual points.

Class Based Representation Space Ap-
proach The virtual points are defined as
unit vectors of a space of dimension the num-
ber of classes, i.e. there is one class associ-
ated with one virtual point. Each example
is associated with a virtual point using its
class.

Experiments
Baselines Our approach

Base 1NN LMNN SCML RVML-Lin-OT RVML-Lin-Class

Amazon 41.51 ± 3.24 65.50 ± 2.28 71.68 ± 1.86 71.62 ± 1.34 73.09 ± 2.49
Caltech 18.04 ± 2.20 49.68 ± 2.76 52.84 ± 1.61 52.51 ± 2.41 55.41 ± 2.55*
DSLR 29.61 ± 4.38 76.08 ± 4.79 65.10 ± 9.00 74.71 ± 5.27 75.29 ± 5.08
Isolet 88.97 95.83 89.61 91.40 94.61

Letters 94.74 ± 0.27 96.43 ± 0.28* 96.13 ± 0.20 90.25 ± 0.60 95.51 ± 0.26
Splice 71.17 82.02 85.43 84.64 78.44

Svmguide1 95.12 95.03 87.38 94.83 85.25
Webcam 42.90 ± 4.19 85.81 ± 3.75 90.43 ± 2.70 88.60 ± 3.63 88.60 ± 2.69

Baselines Our approach

Base 1NN-KPCA LMNN-KPCA GBLMNN SCMLLOCAL RVML-RBF-OT RVML-RBF-Class

Amazon 20.27 ± 2.42 53.16 ± 3.73 65.53 ± 2.32 69.14 ± 1.74 73.51 ± 0.83 76.22 ± 2.09*
Caltech 20.82 ± 8.29 29.88 ± 10.89 49.91 ± 2.80 50.56 ± 1.62 54.39 ± 1.89 57.98 ± 2.22*
DSLR 64.90 ± 5.81 73.92 ± 7.57 76.08 ± 4.79 62.55 ± 6.94 70.39 ± 4.48 76.67 ± 4.57
Isolet 68.70 96.28 96.02 91.40 95.96 96.73
Letter 95.39 ± 0.27 97.17* ± 0.18 96.51 ± 0.25 96.63 ± 0.26 91.26 ± 0.50 96.09 ± 0.21
Splice 66.99 88.97 82.21 87.13 88.51 88.32

Svmguide1 95.72 95.60 95.00 87.40 95.67 95.05
Webcam 73.55 ± 4.57 84.52 ± 3.83 85.81 ± 3.75 88.71 ± 2.83 88.71 ± 4.28 88.92 ± 2.91
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Illustration of the learned metric (2 dimensions on the Isolet dataset).
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