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Abstract

We are interested in supervised metric learning of Mahalanobis like distances.
Existing approaches mainly focus on learning a new distance using similarity
and dissimilarity constraints between examples. In this paper, instead of bring-
ing closer examples of the same class and pushing far away examples of different
classes we propose to move the examples with respect to virtual points. Hence,
each example is brought closer to a a priori defined virtual point reducing the
number of constraints to satisfy. We show that our approach admits a closed form
solution which can be kernelized. We provide a theoretical analysis showing the
consistency of the approach and establishing some links with other classical met-
ric learning methods. Furthermore we propose an efficient solution to the difficult
problem of selecting virtual points based in part on recent works in optimal trans-
port. Lastly, we evaluate our approach on several state of the art datasets.

1 Introduction

The goal of a metric learning algorithm is to capture the idiosyncrasies in the data mainly by defining
a new space of representation where some semantic constraints between examples are fulfilled. In
the previous years the main focus of metric learning algorithms has been to learn Mahalanobis like
distances of the form dn(x,x') = /(x — x/)TM(x — x’) where M is a positive semi-definite
matrix (PSD) defining a set of parameters'. Using a Cholesky decomposition M = LL”', one can
see that this is equivalent to learn a linear transformation from the input space.

Most of the existing approaches in metric learning use constraints of type must-link and cannot-link
between learning examples [1, 2]. For example, in a supervised classification task, the goal is to
bring closer examples of the same class and to push far away examples of different classes. The idea
is that the learned metric should affect a high value to dissimilar examples and a low value to similar
examples. Then, this new distance can be used in a classification algorithm like a nearest neighbor
classifier. Note that in this case the set of constraints is quadratic in the number of examples which
can be prohibitive when the number of examples increases. One heuristic is then to select only
a subset of the constraints but selecting such a subset is not trivial. In this paper, we propose to
consider a new kind of constraints where each example is associated with an a priori defined virtual
point. It allows us to consider the metric learning problem as a simple regression where we try
to minimize the differences between learning examples and virtual points. Fig. 1 illustrates the
differences between our approach and a classical metric learning approach. It can be noticed that
our algorithm only uses a linear number of constraints. However defining these constraints by hand
can be tedious and difficult. To overcome this problem, we present two approaches to automatically
define them. The first one is based on some recent advances in the field of Optimal Transport while
the second one uses a class-based representation space.

"When M =1, the identity matrix, it corresponds to the Euclidean distance.
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(a) Classical must-link cannot-link approach. (b) Our virtual point-based regression formulation.

Figure 1: Arrows denote the constraints used by each approach for one particular example in a
binary classification task. The classical metric learning approach in Fig. 1(a) uses O(n?) constraints
bringing closer examples of the same class and pushing far away examples of different classes. On
the contrary, our approach presented in Fig. 1(b) moves the examples to the neighborhood of their
corresponding virtual point, in black, using only O(n) constraints. ( Best viewed in color )

Moreover, thanks to its regression-based formulation, our approach can be easily kernelized allowing
us to deal efficiently with non linear transformations which is a nice advantage in comparison to
some metric learning methods. We also provide a theoretical analysis showing the consistency of
our approach and establishing some relationships with a classical metric learning formulation.

This paper is organized as follows. In Section 2 we identify several related works. Then in Section 3
we present our approach, provide some theoretical results and give two solutions to generate the
virtual points. Section 4 is dedicated to an empirical evaluation of our method on several widely
used datasets. Finally, we conclude in Section 5.

2 Related work

For up-to-date surveys on metric learning see [3] and [4]. In this section we focus on algorithms
which are more closely related to our approach. First of all, one of the most famous approach
in metric learning is LMNN [5] where the authors propose to learn a PSD matrix to improve the
k-nearest-neighbours algorithm. In their work, instead of considering pairs of examples, they use
triplets (x;, X;, X3) where x; and x;, are in the neighborhood of x; and such that x; and x; are of
the same class and x;, is of a different class. The idea is then to bring closer x; and x; while pushing
Xy, far away. Hence, if the number of constraints seems to be cubic, the authors propose to only
consider triplets of examples which are already close to each other. In contrast, the idea presented in
[6] is to collapse all the examples of the same class in a single point and to push infinitely far away
examples of different classes. The authors define a measure to estimate the probability of having an
example X; given an example x; with respect to a learned PSD matrix M. Then, they minimize,
w.r.t. M, the KL divergence between this measure and the best case where the probability is 1 if the
two examples are of the same class and 0 otherwise. It can be seen as collapsing all the examples
of the same class on an implicit virtual point. In this paper we use several explicit virtual points and
we collapse the examples on these points with respect to their classes and their distances to them.

A recurring issue in Mahalanobis like metric learning is to fulfill the PSD constraint on the learned
metric. Indeed, projecting a matrix on the PSD cone is not trivial and generally requires a costly
eigenvalues decomposition. To address this problem, in ITML [1] the authors propose to use a
LogDet divergence as the regularization term. The idea is to learn a matrix which is close to an a
priori defined PSD matrix. The authors then show that if the divergence is finite, then the learned
matrix is guaranteed to be PSD. Another approach, as proposed in [2], is to learn a matrix L such
that M = LL7, i.e. instead of learning the metric the authors propose to learn the projection. The
main drawback is the fact that most of the time the resulting optimization problem is not convex
[3, 4, 7] and is thus harder to optimize. In this paper, we are also interested in learning L directly.
However, because we are using constraints between examples and virtual points, we obtain a convex
problem with a closed form solution allowing us to learn the metric in an efficient way.

The problem of learning a metric such that the induced space is not linearly dependent of the input
space has been addressed in several works before. First, it is possible to directly learn an intrinsically
non linear metric as in x2-LMNN [8] where the authors propose to learn a x? distance rather than a
Mahalanobis distance. This distance is particularly relevant for histograms comparisons. Note that
this kind of approaches is close to the kernel learning problem which is beyond the scope of this
work. Second, another solution used by local metric learning methods is to split the input space



in several regions and to learn a metric in each region to introduce some non linearity, as in MM-
LMNN [7]. Similarly, in GB-LMNN [8] the authors propose to locally refine the metric learned
by LMNN by successively splitting the input space. A third kind of approach tries to project the
learning examples in a new space which is non linearly dependent of the input space. It can be done
in two ways, either by projecting a priori the learning examples in a new space with a KPCA [9]
or by rewriting the optimization problem in a kernelized form [1]. The first approach allows one to
include non linearity in most of the metric learning algorithms but imposes to select the interesting
features beforehand. The second method can be difficult to use as rewriting the optimization problem
is most of the times non trivial [4]. Indeed, if one wants to use the kernel trick it implies that the
access to the learning examples should only be done through dot products which is difficult when
working with pairs of examples as it is the case in metric learning. In this paper we show that using
virtual points chosen in a given target space allows us to kernelize our approach easily and thus to
work in a very high dimensional space without using an explicit projection thanks to the kernel trick.

Our method is based on a regression and can thus be linked, in its kernelized form, to several ap-
proaches in kernelized regression for structured output [10, 11, 12]. The idea behind these ap-
proaches is to minimize the difference between input examples and output examples using kernels,
i.e. working in a high dimensional space. In our case, the learning examples can be seen as input
examples and the virtual points as output examples. However, we only project the learning examples
in a high dimensional space, the virtual points already belong to the output space. Hence, we do not
have the pre-image problem [12]. Furthermore, our goal is not to predict a virtual point but to learn
a metric between examples and thus, after the learning step, the virtual points are discarded.

3 Contributions

The main idea behind our algorithm is to bring closer the learning examples to a set of virtual points.
We present this idea in three subsections. First we assume that we have access to a set of n learning
pairs (x,v) where x is a learning example and v is a virtual point associated to x and we present
both the linear and kernelized formulations of our approach called RVML. It boils down to solve
a regression in closed form, the main originality being the introduction of virtual points. In the
second subsection, we show that it is possible to theoretically link our approach to a classical metric
learning one based on [13]. In the last subsection, we propose two automatic methods to generate
the virtual points and to associate them with the learning examples.

3.1 Regressive Virtual Metric Learning (RVML)

Given a probability distribution D defined over X x ) where X C R? and Y is a finite label
set, let S = {(x;,v:)}", be a set of examples drawn i.i.d. from D. Let f, : X x Y — V
where V C R? be the function which associates each example to a virtual point. We consider
the learning set Sy = {(x;,Vv;)}"; where v; = fy(x;,y;). For the sake of simplicity denote by
X = (x1,.-- ,xn)T and V = (vq,... ,vn)T the matrices containing respectively one example and
the associated virtual point on each line. In this section, we consider that the function f,, is known.
We come back to its definition in Section 3.3. Let || - ||  be the Frobenius norm and || - ||2 be the l5
vector norm. Our goal is to learn a matrix L such that M = LL” and for this purpose we consider
the following optimisation problem:

1
min f(L, X, V) = min — | XL - V| + A|L|3- ()

The idea is to learn a new space of representation where each example is close to its associated
virtual point. Note that L is a d x d’ matrix and if d’ < d we also perform dimensionality reduction.

Theorem 1. The optimal solution of Problem 1 can be found in closed form. Furthermore, we can
derive two equivalent solutions:

L= (X"X+ ) X'V @)
L =X" (XX” + AnI) "' V. 3)
Proof. The proof of this theorem can be found in the supplementary material. O



From Eq. 2 we deduce the matrix M:
M = LLT = (XX + AnI) " XTVVTX (XTX + Anl) . 4)
Note that M is PSD by construction: x’ Mx = x"LLTx = ||Lx]3 > 0.

So far, we have focused on the linear setting. We now present a kernelized version, showing that it
is possible to learn a metric in a very high dimensional space without an explicit projection.

Let ¢(x) be a projection function and K (x,x’) = ¢(x)T ¢(x’) be its associated kernel. For the sake
of readability, let Kx = ¢(X)p(X)T where ¢(X) = (¢(x1),...,d(x,))". Given the solution
matrix L presented in Eq. 3, we have M = X7 (XX”' + AnI) “lyvr (XXT + Anl) ~'X. Then,
M g the kernelized version of the matrix M is defined such that:

Mg = ¢(X)T (Kx + MI) ' VVT (Kx + AnI) ! 6(X).

The squared Mahalanobis distance can be written as d2,(x,x') = xTMx + x'" Mx’ — 2xTMx'.
Thus we can obtain di/IK (p(x), d(x")) = (%) TMg o(x) + d)(x’)TMKQS(X’) —2¢(x) "M (x')
the kernelized version by considering that:
(%) " Mrd(x) = p(x)" (X)" (Kx + D)~ VVT (Kx + dnD) ™ ¢(X)(x)
= Kx(x)" (Kx + M) ' VVT (Kx + AnI) ! Kx(x)

where Kx (x) = (K(x,x1), ..., K(x,%,))" is the similarity vector to the examples w.r.t. K.

Note that it is also possible to obtain a kernelized version of L: L, = ¢(X)” (Kx + AnI) ™" V.

This result is close to a previous one already derived in [11] in a structured output setting. The main
difference is the fact that we do not use a kernel on the output (the virtual points here). Hence, it is
possible to compute the projection of an example x of dimension d in a new space of dimension d’:

p(x) Ly = ¢(x)To(X)" (Kx + M) 'V = Kx(x)7 (Kx + AnI)~' V.

Recall that in this work we are interested in learning a distance between examples and not in the
prediction of the virtual points which only serve as a way to bring closer similar examples and push
far away dissimilar examples.

From a complexity standpoint, we can see that, assuming the kernel function as easy to calculate,
the main bottleneck when computing the solution in closed form is the inversion of a n X n matrix.

3.2 Theoretical Analysis

In this section, we propose to theoretically show the interest of our approach by proving (i) that it is
consistent and (ii) that it is possible to link it to a more classical metric learning formulation.

3.2.1 Consistency

Let [(L, (x,v)) = [|xTL — vT||% be our loss and let Dy, be the probability distribution over X' x V
such that pp, (x,v) = pp(x,y|v = fv(x,y)). Showing the consistency boils down to bound with

high probability the true risk, denoted by R(L), by the empirical risk, denoted by R(L) such that:

R(L) = Ex v)~p (L, (x,v)) and R(L) = % > UL, (x,v)) = %HXL - V|%.

(x,v)eSy
The empirical risk corresponds to the error of the learned matrix L on the learning set S,,. The true
risk is the error of L on the unknown distribution D,,. The consistency property ensures that with a
sufficient number of examples a low empirical risk implies a low true risk with high probability. To
show that our approach is consistent, we use the uniform stability framework [14].

Theorem 2. Let ||v]|2 < C forany v € V and ||x||s < Cx for any x € X. With probability 1 — 4,
for any matrix L optimal solution of Problem 1, we have:

. 8C2C2 Cx \’ 16C2 ) Ce\?) [Ini
R(L) < R(L) + =" (H\A) +<( : +1>C’v(1+ﬁ> o




Proof. The proof of this theorem can be found in the supplementary material. O
We obtain a rate of convergence in O (ﬁ) which is standard with this kind of bounds.

3.2.2 Link with a Classical Metric Learning Formulation

In this section we show that it is possible to bound the true risk of a classical metric learning approach
with the empirical risk of our formulation. Most of the classical metric learning approaches make
use of a notion of margin between similar and dissimilar examples. Hence, similar examples have
to be close to each other, i.e. at a distance smaller than a margin ;, and dissimilar examples have to
be far from each other, i.e. at a distance greater than a margin v_1. Let (x;,y;) and (x;,y;) be two
examples from X’ x ), using this notion of margin, we consider the following loss [13]:

L (i), (c5,5)) = [ (& (L0, LTx5) =3, 5)
where y;; = 1if y; = y; and —1 otherwise, [2] = max(0, z) is the hinge loss and v, is the
desired margin between examples. As introduced before, we consider that ,,; takes a big value
when the examples are dissimilar, i.e. when y;; = —1, and a small value when the examples are
similar, i.e. when y;; = 1. In the following we show that, relating the notion of margin to the
distances between virtual points, it is possible to bound the true risk associated with this loss by the
empirical risk of our approach with respect to a constant.

Theorem 3. Let D be a distribution over X x ). Let V C RY be a finite set of virtual points and
fv is defined as fy(x;,y;) = vi, v; € V. Let ||v]]a < C, forany v € V and ||x||2 < Cx for any
x € X. Let vy = 2maXy,, x,yu=1 A>(Vi, Vi) and y_1 = 5 Miny, x, y.=—1 d*(Vi, Vi), we have:

E(xmyi)ND,(xjyyj)N’D [yij(d2(LTXi’LTXj) ~ Vyij )L-
. 8C2(2 Cx \’ 16C2 O\ [Ini
< L v'x 1 X x 1 2 1 X 4
S G An <+\ﬂ> +<< A +>CV<+\&> Qn)

Proof. The proof of this theorem can be found in the supplementary material. O

In Theorem 3, we can notice that the margins are related to the distances between virtual points and
correspond to the ideal margins, i.e. the margins that we would like to achieve after the learning
step. Aside this remark, we can define 47 and 4_; the observed margins obtained after the learning
step: All the similar examples are in a sphere centered in their corresponding virtual point and of
diameter 41 = 2 max(x v) ||XTL —vT ||2 Similarly, the distance between hyperspheres of dissim-
ilar examples is §_1 = miny v/ v£v ||V — V||, — 41. As a consequence, even if we do not use
cannot-link constraints our algorithm is able to push reasonably far away dissimilar examples.

In the next subsection we present two different methods to select the virtual points.

3.3 Virtual Points Selection

Previously, we assumed to have access to the function f, : X x Y — V. In this subsection, we
present two methods for generating automatically the set of virtual points and the mapping f .

3.3.1 Using Optimal Transport on the Learning Set

In this first approach, we propose to generate the virtual points by using a recent variation of the
Optimal Transport (OT) problem [15] allowing one to transport some examples to new points cor-
responding to a linear combination of a set of known instances. These new points will actually
correspond to our virtual points. Our approach works as follows. We begin by extracting a set of
landmarks S’ from the training set .S. For this purpose, we use an adaptation of the landmark selec-
tion method proposed in [16] allowing us to take into account some diversity among the landmarks.
To avoid to fix the number of landmarks in advance, we have just replaced it by a simple heuristic
saying that the number of landmarks must be greater than the number of classes and that the max-
imum distance between an example and a landmark must be lower than the mean of all pairwise



Algorithm 1: Selecting S’ from a set of examples S.

input : S = {(x:,v:)}iz1 a set of examples; ) the label set.
output: S’ a subset of S
begin
1 = mean of distances between all the examples of S
Xmax = arg max||x — 0|2
x€S
S = {Xmax}; S =S\ S
€ = MaxXxecs Miny/egr |[|[x — X' ||2
while |S’| < |V|ore > pdo
!
Xmax = arg max X —Xx
g 3 =
S =S5 U{Xmax}; S =9\ 9

€ = maxxes Mily s [|[x — x'||2

distances from the training set -allowing us to have a fully automatic procedure. It is summarized in
Algorithm 1.

Then we compute an optimal transport from the training set S to the landmark set S’. For this
purpose, we create a real matrix C of size |\S| x |S’| giving the cost to transport one training instance
to a landmark such that C(4, j) = ||x; — x}[|2 with x; € S and x; € S’. The optimal transport is

found by learning a matrix € RISIxIS I able to minimize the cost of moving training examples to
the landmark points. Let S’ be the matrix of landmark points (one per line), the transport w.r.t.  of
any training instance (x;, y;) gives a new virtual point such that fy (x;, y;) = v(i)S’, v(¢) designing
the i'" line of . Note that this new virtual point is a linear combination of the landmark instances to
which the example is transported. The set of virtual points is then defined by V = ~S’. The virtual
points are thus not defined a priori but are automatically learned by solving a problem of optimal
transport. Note that this transportation mode is potentially non linear since there is no guarantee that
there exists a matrix T such that V. = XT. Our metric learning approach can, in this case, be seen
as a an approximation of the result given by the optimal transport.

To learn v, we use the following optimization problem proposed in [17]:

. 1 .
argmin (7, C) » — Th(7) +1 > D v =ci)llb
Y J c

where h(y) = — >, ;v(i,7)log(v(é, 7)) is the entropy of ~y that allows to solve the transportation
problem efficiently with the Sinkhorn-Knopp algorithm [18]. The second regularization term, where
v(y; = ¢,j) corresponds to the lines of the jM column of v where the class of the input is ¢, has
been introduced in [17]. The goal of this term is to prevent input examples of different classes to
move toward the same output examples by promoting group sparsity in the matrix ~y thanks to || - ||

corresponding to a [,-norm to the power of p used here with ¢ = 1 and p = %

3.3.2 Using a Class-based Representation Space

For this second approach, we propose to define virtual points as the unit vectors of a space of
dimension |)|. Lete; € RIY! be such a unit vector (1 < j < |V|) -i.e. a vector where all the
attributes are 0 except for one attribute 7 which is set to 1- to which we associate a class label from
Y. Then, for any learning example (x;,y;), we define fy(x;,y;) = ey, where #y; = j if e; is
mapped with the class y;. Thus, we have exactly || virtual points, each one corresponding to a unit
vector and a class label. We call this approach the class-based representation space method. If the
number of classes is smaller than the number of dimensions used to represent the learning examples,
then our method will perform dimensionality reduction for free. Furthermore, our approach will try
to project all the examples of one class on the same axis while examples of other classes will tend
to be projected on different axes. The underlying intuition behind the new space defined by L is to
make each attribute discriminant for one class.



Table 1: Comparison of our approach with several baselines in the linear setting.

[ | Baselines | Our approach ]
l Base [ INN [ LMNN [ SCML [ RVML-Lin-OT [ RVML-Lin-Class l
Amazon 41.51 +3.24 65.50 £+ 2.28 71.68 + 1.86 71.62 £ 1.34 73.09 + 2.49
Breast 95.49 £+ 0.79 95.49 + 0.89 96.50 + 0.64* 95.24 +£1.21 95.34 +0.95
Caltech 18.04 +2.20 49.68 + 2.76 52.84 £ 1.61 52.51 £2.41 55.41 + 2.55*
DSLR 29.61 £+ 4.38 76.08 + 4.79 65.10 = 9.00 74.71 £5.27 75.29 £ 5.08

Tonosphere 86.23 +1.95 88.02 + 3.02 90.38 + 2.55* 87.36 + 3.12 82.74 + 2.81
Isolet 88.97 95.83 89.61 91.40 94.61

Letters 94.74 £ 0.27 96.43 £+ 0.28* 96.13 £+ 0.20 90.25 £ 0.60 95.51 +0.26

Pima 69.91 £ 1.69 70.04 £ 2.20 69.22 + 2.60 70.48 + 3.19 69.57 £+ 2.85

Scale 78.68 + 2.66 78.20 £ 1.91 93.39 + 1.70* 90.05 £+ 2.13 87.94 £ 1.99
Splice 7L 8202 85.43 34.64 7844
Svmguidel 95.12 95.03 87.38 94.83 85.25

Wine 96.18 £ 1.59 98.36 + 1.03 96.91 £ 1.93 98.55 + 1.67 98.18 £ 1.48

Webcam 4290 £+ 4.19 85.81 +3.75 90.43 £ 2.70 88.60 &+ 3.63 88.60 + 2.69

[ mean | 6089 | 8281 | 8546 [ _ 8386 | 83.07 ]

4 Experimental results

In this section, we evaluate our approach on 13 different datasets coming from either the UCI [19]
repository or used in recent works in metric learning [8, 20, 21]. For isolet, splice and svmguidel
we have access to a standard training/test partition, for the other datasets we use a 70% training/30%
test partition, we perform the experiments on 10 different splits and we average the result. We
normalize the examples with respect to the training set by subtracting for each attribute its mean
and dividing by 3 times its standard deviation. We set our regularization parameter A with a 5-fold
cross validation. After the metric learning step, we use a 1-nearest neighbor classifier to assess the
performance of the metric and report the accuracy obtained.

We perform two series of experiments. First, we consider our linear formulation used with the
two virtual points selection methods presented in this paper: RVML-Lin-OT based on Optimal
Transport (Section 3.3.1) and RVML-Lin-Class using the class-based representation space method
(Section 3.3.2). We compare them to a 1-nearest neighbor classifier without metric learning (INN),
and with two state of the art linear metric learning methods: LMNN [5] and SCML [20].

In a second series, we consider the kernelized versions of RVML, namely RVML-RBF-OT and
RVML-RBF-Class, based respectively on Optimal Transport and class-based representation space
methods, with a RBF kernel with the parameter o fixed as the mean of all pairwise training set
Euclidean distances [16]. We compare them to non linear methods using a KPCA with a RBF kernel?
as a pre-process: 1NN-KPCA a 1-nearest neighbor classifier without metric learning and LMNN-
KPCA corresponding to LMNN in the KPCA-space. The number of dimensions is fixed as the one
of the original space for high dimensional datasets (more than 100 attributes), to 3 times the original
dimension when the dimension is smaller (between 5 and 100 attributes) and to 4 times the original
dimension for the lowest dimensional datasets (less than 5 attributes). We also consider some local
metric learning methods: GBLMNN [8] a non linear version of LMNN and SCMLLOCAL [20] the
local version of SCML. For all these methods, we use the implementations available online letting
them handle hyper-parameters tuning.

The results for linear methods are presented in Table 1 while Table 2 gives the results obtained
with the non linear approaches. In each table, the best result on each line is highlighted with a
bold font while the second best result is underlined. A star indicates either that the best baseline
is significantly better than our best result or that our best result is significantly better than the best
baseline according to classical significance tests (the p-value being fixed at 0.05).

We can make the following remarks. In the linear setting, our approaches are very competitive to the
state of the art and RVML-Lin-OT tends to be the best on average even though it must be noticed that
SCML is very competitive on some datasets (the average difference is not significant). RVML-Lin-
Class performs slightly less on average. Considering now the non linear methods, our approaches
improve their performance and are significantly better than the others on average, RVML-RBF-Class
has the best average behavior in this setting. These experiments show that our regressive formulation

2With the o parameter fixed as previously to the mean of all pairwise training set Euclidean distances.



Table 2: Comparison of our approach with several baselines in the non-linear case.

[ | Baselines | Our approach ]
l Base [ INN-KPCA [ LMNN-KPCA [ GBLMNN [ SCMLLOCAL [ RVML-RBF-OT [ RVML-RBF-Class l
Amazon 20.27 £2.42 53.16 £ 3.73 65.53 +£2.32 69.14 + 1.74 73.51 £0.83 76.22 + 2.09*
Breast 9243 £2.19 95.39 + 1.32 95.58 £+ 0.87 96.31 £ 0.66 95.73 £0.97 95.78 + 0.92
Caltech 20.82 + 8.29 29.88 + 10.89 49.91 £ 2.80 50.56 £+ 1.62 54.39 + 1.89 57.98 + 2.22*
DSLR 64.90 + 5.81 73.92 £ 7.57 76.08 + 4.79 62.55 + 6.94 70.39 + 4.48 76.67 £+ 4.57

Tonosphere 75.57 £2.79 85.66 + 2.55 87.36 + 3.02 90.94 £ 3.02 90.66 £ 3.10 93.11 + 3.30*
Isolet 68.70 96.28 96.02 91.40 95.96 96.73

Letter 95.39 £+ 0.27 97.17* £ 0.18 96.51 £ 0.25 96.63 £ 0.26 91.26 £ 0.50 96.09 £+ 0.21

Pima 69.57 £+ 2.64 69.48 + 2.04 69.52 £2.27 68.40 + 2.75 69.35 £ 2.95 70.74 £ 2.36

Scale 78.36 + 0.88 88.10 £+ 2.26 77.88 +2.43 93.86 + 1.78 95.19 + 1.46* 94.07 £+ 2.02
Splice 66.99 88.97 82.21 87.13 88.51 88.32
Svmguidel 95.72 95.60 95.00 87.40 95.67 95.05

Wine 92.18 £ 1.23 95.82 +£2.98 98.00 £+ 1.34 96.55 £ 2.00 98.91 + 1.53 98.00 £ 1.81

Webcam 73.55 £4.57 84.52 £3.83 85.81 +3.75 88.71 +2.83 88.71 +4.28 88.92 +2.91

[ mean | 7038 [ 807 [ ®72 | ®0d_ | 8525 | 86.74 ]

is very competitive and is even able to improve state of the art performances in a non linear setting
and consequently that our virtual point selection methods automatically select correct instances.

Considering the virtual point selection, we can observe that the OT formulation performs better than
the class-based representation space one in the linear case, while it is the opposite in the non-linear
case. We think that this can be explained by the fact that the OT approach generates more virtual
points in a potentially non linear way which brings more expressiveness for the linear case. On the
other hand, in the non linear one, the relative small number of virtual points used by the class-based
method seems to induce a better regularization. In Section 4 of the supplementary material, we
provide additional experiments showing the interest of using explicit virtual points and the need of
a careful association between examples and virtual points. We also provide some graphics showing
2D projections of the space learned by RVML-Lin-Class and RVML-RBF-Class on the Isolet dataset
illustrating the capability of these approaches to learn discriminative attributes.

In terms of computational cost, our approach -implemented in closed form [22]- is competitive
with classical methods but does not yield to significant improvements. Indeed, in practice, classical
approaches only consider a small number of constraints e.g. ¢ times the number of examples, where
c is a small constant, in the case of SCML. Thus, the practical computational complexity of both our
approach and classical methods is linearly dependant on the number of examples.

5 Conclusion

We present a new metric learning approach based on a regression and aiming at bringing closer
the learning examples to some a priori defined virtual points. The number of constraints has the
advantage to grow linearly with the size of the learning set in opposition to the quadratic grow of
standard must-link cannot-link approaches. Moreover, our method can be solved in closed form and
can be easily kernelized allowing us to deal with non linear problems. Additionally, we propose
two methods to define the virtual points: One making use of recent advances in the field of optimal
transport and one based on unit vectors of a class-based representation space allowing one to perform
directly some dimensionality reduction. Theoretically, we show that our approach is consistent and
we are able to link our empirical risk to the true risk of a classical metric learning formulation.
Finally, we empirically show that our approach is competitive with the state of the art in the linear
case and outperforms some classical approaches in the non-linear one.

We think that this work opens the door to design new metric learning formulations, in particular the
definition of the virtual points can bring a way to control some particular properties of the metric
(rank, locality, discriminative power, . ..). As a consequence, this aspect opens new issues which are
in part related to landmark selection problems but also to the ability to embed expressive semantic
constraints to satisfy by means of the virtual points. Other perspectives include the development of
a specific solver, of online versions, the use of low rank-inducing norms or the conception of new
local metric learning methods. Another direction would be to study similarity learning extensions
to perform linear classification such as in [21, 23].
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The goal of this supplementary is to present the proofs of the main theorems of the paper along the
first three sections. Moreover, in Section 4 we provide additional experiments showing the interest
of using explicit virtual points and the need of a careful association between examples and virtual
points. We also provide some graphics showing 2D projections of the space learned by RVML-Lin-
Class and RVML-RBF-Class on the Isolet dataset illustrating the capability of these approaches to
learn discriminative attributes.

First of all, before presenting the proofs, we recall our setting for the sake of completeness. Given
a probability distribution D defined over X x ) where X C R? and Y is a finite label set, let
S = {(xi, i)} be a set of examples drawn i.i.d. from D. Let f, : X x Y — V where V C R¥
be the function which associates each example to a virtual point such that v = f, (x,y). We denote
by D, the probability distribution defined on &’ x ) obtained from the distribution D after applying
fv, ie. pp,(x,v) = pp(x,y|v = fyv(x,y)). Thus it is equivalent to obtain the set of examples
Sy = {(x4,v;)}, from S after applying f, and to draw Sy i.i.d. from D,. Let || - || be the
Frobenius norm and || - ||2 be the I3 vector norm. We consider the following optimisation problem
where we expanded the first Frobenius norm:

1
L = argmin f(L) = arg min — Z [xTL — vT|3 + AL %. (1)

’ rn
LecRdxd LecRdxd (x.v)ESy

Furthermore, we define the loss (2), the empirical risk (3) and the true risk of our algorithm (4):

(L, (x,v)) = [x"L = v"|3 )
A 1
RL)=— Y UL, (x,v) 3)
n (x,v)ESy
R(L) = E(X?V)NDVZ(L (x,v)) @

1 Proof of Theorem 1

Theorem 1. The optimal solution of Problem I can be found in closed form. Furthermore, we can
derive two equivalent solutions:

L= (X"X +Anl) ' X7V (5)
L =X" (XX” +AnI) "' V. (6)

Proof. Problem 1 is a classical regularized regression problem admitting a closed form solution
[1]. We recall the derivation here for the sake of completeness. First we consider the derivative of



f(L,X, V) with respect to L:
of(L, X, V)
0L

Then we set this derivative to zero to obtain:

L= (X"X + ) X'V,

Finally Eq. 6 comes from using Taylor expansions as proposed in [1].

2 Proof of Theorem 2

1 2
=2 (XTX + AI) L-=X"V.
n n

The interest of this theorem is to show that our algorithm is consistent, i.e. that with a sufficient
number of examples the empirical risk tends to be close to the true risk. To prove this theorem
we use the uniform stability framework presented in [2]. The idea is to show that changing one
example in the training set does not change much the output of the algorithm. Thus, we start by
upper bounding the Frobenius norm of L optimal solution of Problem 1 and the loss (2) considered.
Afterwards, we show the o-admissibility of the loss which allows us to prove the uniform stability

of our algorithm which, in turns, allows us to apply Theorem 12 from [2].

In the following, we assume that ||x||2 < Cx and ||v]|2 < Cy. The next lemma upper bounds the

Frobenius norm of L. optimal solution of Problem 1:
Lemma 1. Let L be an optimal solution of Problem 1, we have:

Cy
L|lr < —.
|LllF < 7
Proof. Since L is an optimal solution of Problem 1, we have:
f(L) < £(0)
1 1
& =3 ML) AR S ST U0, (x,v) + A0]F
(x,v)ESy (x,v)eSy
1
= AL < - > IvIB
(x,v)ESy
= AIL|F < 2
Cy
= Lilr < —
- <

Inequality 7 is obtained by noting that our loss is always positive.

We can now show that our loss is bounded.

2
Lemma 2. The loss (L, (x,v)) is bounded by M = C? (1 + Q) .

Proof.
[(L, (x,v)) = [x"L = v}

2
< (X"l 1L 7 + (v l2)

C 2
<(Cx=+Cy
( VA )

C 2
<c§(1+") :
B VA

)

®)

Inequality 8 comes from the successive application of the triangle inequality and standard properties

on norms.

O



We recall the definition of o-admissibility from [2].

Definition 1. A loss function [ is o-admissible if it is convex with respect to its first argument and
the following condition holds:

VL, L' € R”? V(x,v) ~ Dy, [I(L, (x,v)) — (L, (x,v))| < o||L — L'||

We show that our loss is o-admissible in the following lemma.

Lemma 3. The loss (L, (x,V)) is o-admissible with o = 2C,Cx (1 + Q>

Proof.
[lx"L" —vT 3 — [Ix"L" — vT||3|

= [Ix"L = v l2 = "L = v la| [[lx"L" = v 2 + [lxTL" = v 2|

S ”XTL/ _ VT _ XTL// + VT”2 |||XTL/ _ VTH2 + HXTL// _ VTH2| (9)
C
< ||IL" = L"||x2C, Cy (1 + ") : 10

Inequality 9 is due to the reverse triangle inequality and inequality 10 follows from Lemma 2. [

We will now prove that our algorithm is uniformly stable but before we need the following lemma.
In the following R(L) is the empirical risk over a set Sy, of examples while we design by Ri(L)
the empirical risk over a set S¢ obtained from S, by replacing its i element. Similarly f and f*
denote the functions to optimize in Problem 1 using the sets of examples Sy and S respectively.

Lemma 4. Let f and f° be the functions to optimize, L and L’ their respective minimizers and
A the regularization parameter used in our algorithm. Let AL = L — L, then, we have, for any

t €0,1):

; : 44Cy Cy Cx
IL[J% — I — tAL|% + LY % — | L’ + tAL[|% < (

2 (1 sl an

Proof. This proof is similar to the proof in Lemma 20 in [2] which we recall here for the sake of
completeness. First, note that R is a convex function, thus, for any ¢ € [0, 1], we have:

RI(L —tAL) — RY(L) < t(R(L*) — R(L)) (12)
RY(L +tAL) — RY(L?) < t(RY(L) — RY(LY)) (13)

Summing inequalities (12) and (13) gives:
R'(L — tAL) — RY(L) + R(L + tAL) — R'(L¥) <0 (14)

L and L respectively minimize f and f?, we have:
f(L) = f(L —tAL)
FILY) = f{(L +1AL)
Summing inequalities (14), (15) and (16) gives:

0 15)

<
<0 (16)

RI(L —tAL) — RY(L) + R(L) — R(L — tAL)
+AILJZ = AL — (AL |3 + AL - AL + AL <0 (7)
From (17), we can write:
AILI% — AL — (AL % + AJL]% - AL 4+ tAL|J < B (18)
with

B = R'(L) — RY(L —tAL) + R(L — tAL) — R(L).



Using Lemma 3 we can bound B:

B < |RI(L) - RI(L — tAL) + R(L — tAL) — }?(L)’
<X > UL —tAL, (x,v)) - 1 > UL —tAL, (x,v)")
" (x,v)€ESy " (x,v)'es]
1 - 1
o> V)Y == Y U (x, ) (19)
(x,v)ieSi (x,v)ESy

< % ’l(L - tAL? (Xi7vi)) - l(L - tALv (Xiﬂvi)i) + l(L7 (Xiavi)i) - Z(Lv (Xivvi))| (20)
S % ‘I(L — tAL, (Xi,Vi)) — Z(L, (Xi,Vi))| + % ‘Z(L7 (Xi7vi)i) — Z(L — tAL, (Xi7vi)i)|

4tCy Cye Oy
<—(1+—= ) ||AL||#. 21
< (1+ 55 ) 1AL e

Inequality 19 comes from the definition of the empirical risk and Inequality 20 is deduced by noting
that the sums only differ by their ™ element. Finally, we apply Lemma 3 twice to obtain Inequal-
ity 21. O

We recall the definition of uniform stability [2] in the next definition.

Definition 2. An algorithm A has uniform stability 3 with respect to the loss function l if the follow-
ing holds

VS, ~ Dy, Vie{l,...,n}, sup |l(As,,(x,v))—1(Asi,(x,v))| <8

(x,v)~Dy

where S! is a training set obtained from S, when replacing its i"" example with a new independent
example and Ag, and Ag: stand for the optimal solution of algorithm A with respect to a given
training set.

. . Lo BC2CE o)
Lemma 5. Our algorithm has a uniform stability in 8 = —¢ 1+ )

Proof. By setting t = % in Lemma 4, one can obtain for the left hand side:

1 ; L1 1
ILIF — IT - SALJ3 + L3 - |L¢ + SAL|% = SIAL|

and thus:
1 20, C C
—||AL||Z < =X = (1 + =X ) |AL
1ALz < 255 (14 &) jan)s
4C, Cy Cx
ALl r < /X2 (14 =X
- AL < 5% (14 &)
From Lemma 3 we have:
. C
WL, (x,v)) = (L, (x,v))]| <2C,Cx [ 1+ == | ||AL
. 66 v) 1L (5 v) (1+ %) 1oz
_SCCE () G’
) vV

We recall Theorem 12 from [2] for the sake of completeness:



Theorem 12 ([2]). Let A be an algorithm with uniform stability $ w.r.t. a loss function | such that
0 <(As,,(x,v)) < M forall (x,v) ~ Dy and all sets Sy. Then for any n > 1 the following
bound holds with probability at least 1 — § over the random draw of the sample Sy,

1
R(As,) < R(As,) + B+ (2nB + M)y 1;175

We have shown that our algorithm is uniformly stable and that our loss is bounded, hence we can
apply this theorem to get Theorem 2.

Theorem 2. Let ||v]|2 < C\ forany v € V and ||x||2 < Cx for any x € X. With probability 1 — §,
for any matrix L optimal solution of Problem 1, we have:

8C2C2

2 Cx \’ 16C2 ) e\’ [Ini
() *(( e (e ) )

Proof. This theorem is a direct application of Theorem 12 from [2] using the bound on the loss
presented in Lemma 2 and the uniform stability of our algorithm proven in Lemma 5. O

R(L) < R(L) +

Kernelized case Recall that in the linear case we assumed that ||x||2 < Cx. In the kernelized case,
we only have to bound ||¢(x)]||2 where ¢ is the projection function associated to the used kernel. A
common assumption [3] when studying kernels is that 3« such that 0 < k < oo and K (x,x) < k2.
Hence, we have ||¢(x)||3 < 2. Thus setting Cyx =  allows us to use the same proof than in the
linear case leading us to the same generalization bound (the only difference being the value of CY).

3 Proof of Theorem 3

For the sake of readability we recall the loss for the classical metric learning approach [4] considered
here:

UL, (x5, 91), (%5, 95)) = [Z/z‘j(dQ(LTXuLTXj) - ’sz‘j):|+ (22)
and the theorem:

Theorem 3. Let D be a distribution over X x ). Let V C RY be a finite set of virtual points and
fv is defined as fv(x;,y;) = vi, v; € V. Let ||v]|a < C, forany v € V and ||x||2 < Cx for any
x € X. Let 71 = 2maXx, x; yp=1 4> (Vk, Vi) and y_1 = 5 Mily, x; yp=—1 d?(vy,vi), we have:

E(Xiyy'i)ND7(xj7yj)ND [ylj (d2 (LTXi7 LTXJ') — Vyij )} +

A 8C202 Ci\ 16C2 ) ce\’\ [l
< VX X
<8| R(L)+ o <1+\f>\> +<< 3 +1>Cv<1+ﬁ> 2n)

Proof. First of all, let us consider two examples x; and x; and their associated virtual points v; and
V.
J

Using the fact that distances respect the triangle inequality, one can obtain:
d(LTx;, LTx;) < d(L'x;,v;) + d(vi,v;) +d(v;, LTx;).
Then squaring both sides of the inequality gives:
d?(LTx;, LTx;) < d®(LTx;,vi) + d*(vi, v;) + d?(v;, LT x;)
+ 2(d(LT%;,v;) + d(v;, LTx;))d(vi, v;) + 2d(LT x;, vi)d(v;, LT x;).
Finally, using Legendre identity' twice, we obtain:

d2 (LTXi, LTX]') S 4d2(LTX1', Vi) + 2d2 (Vl‘7 Vj) + 4d2 (Vj, LTXj).

'Legendre identity is (a + b)? — (a — b)*> = 4ab from which we deduce a® + b? > 2ab.



Similarly, switching the role of d(L”x;, LTx;) and d(v;, v;) we have:

d2 (Vi, Vj) S 4d2 (LTXZ', Vz’) + 2d2 (LTXZ', LTX]‘) + 4d2 (Vj, LTXj)

1

54 —d2(LTXZ‘, LTXj) < 2(12(]:471)(1‘7 Vi) + 2d2(Vj, LTXj) - §d2(v7;, Vj)
1

< —d? (LTXZ‘, LTXJ‘) < 4d? (LTXi7 Vj) + 4d? (Vj7 LTXJ‘) — 5(12 (VZ‘, Vj)

Now, let us consider two examples of the same class, i.e. y;; = 1, we have:
[yij (d° (LT3, LT %) = 7,,)] . = [d2(L7%q, L %) —m] |
< [4d*(L7x;,vi) + 4d>(v;, LTx;) + 2d*(vi, vi) — 7] N
< Ad*(L7x;,v;) + 4d*(v;, L x;). (23)
Inquality 23 comes from the fact that 4 > 2d*(v;,v;) and by noting that a distance is always
positive.

Similarly, we consider two examples of different classes, i.e. y;; = —1, and we obtain:
I:y’bj (d2 (LTXi7 LTXj) - ’qu )] + = [_d2 (LTXi7 LTXj) + ’771] +

1
S 4612(LTXZ'7 Vi) + 4d2(Vj, LTXj) - §d2(Vi7 Vj) + V-1
+
< 4d*(L'x;, v;) + 4d*(v;, L x;). (24)
Inequality 24 comes from the fact that v_; < %dz(vi, v;) and by noting that a distance is always
positive.

Taking the expectation on both sides of Inequality 24 gives:

E (s, y)~D. () ~D (Ui (d° (LT %3, LT x5) = y,0)] (25)
< E(x yi) D, (x5~ D4 (LT x5, vi) + 4d* (v, LT x;)
< By ) oD, (x5~ DA (LT %4, Vi) + B, y)op, (95~ A4 (v, LX)
< 8E(x’y)~pd2 (LTx,v)
< 8R(L).

Applying Theorem 2 to the last inequality gives the theorem. O

4 Extended Experiments

In this section, we propose several experiments showing the interest of using explicit virtual points
and the need of a careful association between examples and virtual points. We also provide some
graphics showing 2D projections of the space learned by RVML-Lin-Class and RVML-RBF-Class
on the isolet dataset illustrating the capability of these approaches to learn discriminative attributes.

4.1 Interest of Explicit Virtual Points

In [5] the authors propose to collapse similar examples on a single point, an implicit virtual point,
while pushing far away dissimilar examples. This behavior can, in fact, be achieved by any margin
based metric learning approach by setting the margin between similar examples to 0 and the margin
between dissimilar examples to a high value. Thus to illustrate the interest of using explicit virtual
points, we propose to compare our approach to ITML when considering the aforementioned margins
(ITML-Collapse). For the sake of completeness we also consider ITML with tuned margins ITML).
The results are presented in Table 1 and show that, on average, ITML-Collapse is less accurate than
RVML-Lin-Class hinting that considering explicit virtual points is better than considering implicit
ones.



Table 1: Comparison between a method with explicit virtual points (RVML-Lin-Class) and a method
with implicit virtual points (ITML-Collapse).

| Base | RVML-Lin-Class [ ITML-Collapse [ ITML |
Amazon 73.09 + 2.49 5797 £3.36 | 6591 +2.64
Breast 95.34 +0.95 94.56 + 1.41 95.49 + 1.15
Caltech 55.41 + 2.55 37.34 £ 2.01 47.31 £ 2.75
DSLR 75.29 4+ 5.08 7725 +4.15 | 77.25 £ 4091
Ionosphere 82.74 +2.81 85.75+£6.23 | 88.11 + 1.68
Isolet 94.61 74.53 92.88
Letters 95.51 +0.26 95.67 = 0.30 | 95.00 + 0.64
Pima 69.57 £ 2.85 71.08 + 2.13 70.26 + 1.38
Scale 87.94 + 1.99 87.51 £4.39 87.67 £2.71
Splice 78.44 66.80 71.49
Svmguidel 85.25 94.62 95.00
Wine 98.18 + 1.48 8591 £3.74 9691 +1.93
Webcam 88.60 £ 2.69 97.64 +2.43 | 86.56 + 2.88
[ mean | 83.07 [ 7807 | 8230 |

Table 2: Comparison of our OT based formulation to a random selection approach when learning a
linear metric.

| | OT based approach | Random ‘
| Base | RVML-Lin-OT [ 1 VP perclass | 2 VP per class | 5 VP per class |
Amazon 71.62 £1.34 74.23 £+ 2.15 72.92 £ 2.31 70.31 £2.82
Breast 9524 +£1.21 95.34 + 0.95 95.29 +1.32 9490 +1.92
Caltech 52.51 +£2.41 55.09 + 2.38 53.63 £2.12 49.59 £+ 1.69
DSLR 74.71 £ 5.27 70.59 £ 6.06 63.53 £5.08 52.16 £ 8.68
Ionosphere 87.36 +£ 3.12 82.74 + 2.81 88.40 + 4.05 90.28 + 3.33
Isolet 91.40 92.75 94.16 92.43
Letters 90.25 £+ 0.60 89.90 + 1.02 90.54 +£1.24 91.13 £ 0.74
Pima 70.48 + 3.19 69.57 £ 2.85 69.35 +2.44 69.26 + 2.60
Scale 90.05 + 2.13 88.10 + 2.57 89.47 +2.99 89.21 £+ 2.68
Splice 84.64 78.44 78.94 80.87
Svmguidel 94.83 85.25 86.90 94.70
Wine 98.55 + 1.67 98.55+1.43 97.64 +£2.43 98.00 £ 1.34
Webcam 88.60 + 3.63 88.92 + 3.21 86.24 + 2.95 81.18 £+ 3.56
[ mean | 83.86 [ 227 | 8208 | 8108 |

4.2 Association of Examples and Virtual Points

To further assess the interest of using our OT based formulation to select virtual points and associate
them to examples, we propose to compare it with a random based approach (Random). In this
latter setting, we randomly select a subset of examples for each class to act as virtual points and we
randomly associate each example of this class to these virtual points. The results in the linear case
are presented in Table 2 while the results in the non-linear case are presented in Table 3. Overall,
randomly selecting the virtual points is less accurate than using the OT based formulation. This
is especially true in the linear case where the metric is less expressive than in the kernelized case
and thus requires more meaningful virtual points. Hence, selecting virtual points and correctly
associating them to the examples is key to obtain a good performance.



Table 3: Comparison of our OT based formulation to a random selection approach when learning a

non linear metric.

| | OT based approach | Random ‘
| Base | RVML-RBF-OT [ 1 VP perclass | 2 VP per class | 5 VP per class |
Amazon 73.51 +£0.83 75.74 + 2.35 72.68 £ 2.02 70.07 £ 2.86
Breast 95.73 £ 0.97 95.73 +£1.07 95.83 + 0.80 95.58 + 1.38
Caltech 54.39 + 1.89 58.33 + 2.05 53.98 + 3.18 50.35 +£1.89
DSLR 70.39 + 4.48 65.29 £+ 7.51 58.24 +7.79 48.82 + 8.03
Ionosphere 90.66 + 3.10 90.57 + 3.05 89.25 +3.73 90.38 + 3.26
Isolet 95.96 96.99 96.54 95.25
Letters 91.26 £ 0.50 91.77 £ 043 91.87 £ 0.52 92.04 + 0.62
Pima 69.35 +£2.95 70.82 + 4.60 71.26 + 2.84 70.00 + 2.56
Scale 95.19 + 1.46 93.39 +2.19 91.96 + 1.69 91.32 +£1.95
Splice 88.51 88.37 88.46 87.22
Svmguidel 95.67 95.03 95.55 95.88
Wine 98.91 +1.53 97.82 + 1.88 97.27 + 1.96 97.82 +1.67
Webcam 88.71 + 4.28 87.31 4+ 2.99 83.01 +3.28 76.67 +£4.78
[ mean | 85.25 [ 8517 | 8353 | 8165 |

4.3 TIllustration of the Behavior of Our Approach on One Dataset

To illustrate the capability of RVML-Lin-Class and RVML-RBF-Class to learn discriminative at-
tributes we propose to select two dimensions out of the 26 of the space learned by these approaches
on the isolet dataset. We selected 3 pairs of axis and the images obtained are presented in Fig. 1.
On the same line, we plot two images corresponding to the same axis pair: on the left column for
RVML-Lin-Class and on the right column for RVML-RBF-Class. Note that for each axis, there is
only one class for which the value of the attribute tends to be 1, for all the other classes this feature
tends to be 0. Furthermore, we can note that the kernelized version of our metric outputs a more
discriminative space: the examples are brought closer to their corresponding virtual point than in the

linear version.
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Figure 1: In the learned space from the isolet dataset, we randomly select 2 attributes three times and
plot the 2D projection on each pair. The first line corresponds to features 1 and 20, the second line
to features 7 and 14 and the third line to features 2 and 23. The left column corresponds to the space
learned by RVML-Lin-Class (linear) and the right column to the one learned by RVML-RBF-Class
(non linear). (Best viewed in color)



