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Michaël Perrot, Amaury Habrard, Damien Muselet, and Marc Sebban
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Abstract. Having perceptual differences between scene colors is key in
many computer vision applications such as image segmentation or visual
salient region detection. Nevertheless, most of the times, we only have
access to the rendered image colors, without any means to go back to
the true scene colors. The main existing approaches propose either to
compute a perceptual distance between the rendered image colors, or to
estimate the scene colors from the rendered image colors and then to eval-
uate perceptual distances. However the first approach provides distances
that can be far from the scene color differences while the second requires
the knowledge of the acquisition conditions that are unavailable for most
of the applications. In this paper, we design a new local Mahalanobis-like
metric learning algorithm that aims at approximating a perceptual scene
color difference that is invariant to the acquisition conditions and com-
puted only from rendered image colors. Using the theoretical framework
of uniform stability, we provide consistency guarantees on the learned
model. Moreover, our experimental evaluation shows its great ability (i)
to generalize to new colors and devices and (ii) to deal with segmentation
tasks.
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1 Introduction

In computer vision, the evaluation of color differences is required for many ap-
plications. For example, in image segmentation, the basic idea is to merge two
neighbor pixels in the same region if the difference between their colors is ”small”
and to split them into different regions otherwise [4]. Likewise, for visual salient
region detection, the color difference between one pixel and its neighborhood is
also the main used information [1], as well as for edge and corner detection [27,
28]. On the other hand, in order to evaluate the quality of color images, Xue et
al. have shown that the pixel-wise mean square difference between the original
and distorted image provides very good results [36]. As a last example, the ori-
entation of gradient which is the most widely used feature for image description
(SIFT [16], HOG [7]) is evaluated as the ratio between vertical and horizontal
differences.
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Depending on the application requirement, the used color difference may
have different properties. For material edge detection, it has to be robust to lo-
cal photometric variations such as highlights or shadows [28]. For gradient-based
color descriptors, it has to be robust to acquisition condition variations [6, 20]
or discriminative [27]. For most applications and especially for visual saliency
detection [1], image segmentation [4] or image quality assessment [36], the color
difference has to be above all perceptual, i.e. proportional to the color difference
perceived by human observers. In the computer vision community, some color
spaces such as CIELAB or CIELUV are known to be closer to the human percep-
tion of colors than RGB. It means that distances evaluated in these spaces are
more perceptual than distances in the classical RGB spaces (which are known to
be non uniform). Thus, by moving from RGB to one of these spaces with a de-
fault transformation [23, 24], the results of many applications have improved [1,
2, 4, 11, 18]. Nevertheless, it is important to know that this default approach
provides a perceptual distance between the colors in the rendered image (called
image-wise color distance) and not between the colors as they appear to a hu-
man observer looking at the real scene (called scene-wise color distance). The
transformation from the scene colors to the image rendered colors is a succession
of non-linear transformations which are device specific (white balance, gamma
correction, demosaicing, compression, . . . ). For some applications such as image
quality assessment, it is required to use the image-wise color distances since only
the rendered image colors need to be compared, whatever the scene colors. But
for a lot of other applications such as image segmentation, saliency detection,
. . . , we claim that a scene-wise perceptual color distance should be used. Indeed,
in these cases, the aim is to be able to evaluate distances as they would have been
perceived by a human observing the scene and not after the camera transforma-
tions. Some solutions exist [12] to get back to scene colors from RGB camera
outputs but they require calibrated acquisition conditions (known illumination,
known sensor sensitivities, RAW data available,. . . ).

In this paper we propose a method to estimate scene-wise color distances
from non calibrated rendered image colors. Furthermore, we go a step further
towards an invariant color distance. This invariance property means that, con-
sidering one image representing two color patches, the distance is predicting how
much difference would have perceived a human observer looking at the two real
patches under standard fixed viewing conditions, such as the ones recommended
by the CIE (Commission Internationale de l’Eclairage) in the context of color
difference assessment [22]. In other words, whatever the acquisition device or the
illuminant, an invariant scene-wise distance should return stable values.

Since the acquisition condition variability is huge, rather than using mod-
els of invariance [6, 20] and models of acquisition devices [13, 34], we propose to
automatically learn an invariant perceptual distance from training data. In this
context, our objective is three-fold and takes the form of algorithmic, theoretical
and practical contributions:

- First, we design a new metric learning algorithm [37] dedicated to approxi-
mate reference perceptual distances from the image rendered RGB space. It aims
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at learning local Mahalanobis-like distances in order to capture the non linearity
required to get a scene-wise perceptual color distance.

- Second, modeling the regions as a multinomial distribution and making use
of the theoretical framework of uniform stability, we derive consistency guaran-
tees on our algorithm that show how fast the empirical loss of our learned metric
converges to its true generalization value.

- Lastly, to learn generalizable distances, we create a dataset of color patches
that are acquired under a large range of acquisition conditions (different cam-
eras, illuminations, viewpoints). We claim that this dataset [37] may play the
role of benchmark for the computer vision community.

The rest of this paper is organized as follows: Section 2 is devoted to the pre-
sentation of the related work in color distances and metric learning. In Section 3,
we present the experimental setup used to generate our dataset of images. Then,
we introduce our new metric learning algorithm and perform a theoretical anal-
ysis. Finally, Section 4 is dedicated to the empirical evaluation of our algorithm.
To tackle this task, we perform two kinds of experiments: first, we assess the
capability of the learned metrics to generalize to new colors and devices; second,
we evaluate their relevance in a segmentation application. We show that in both
settings, our learned metrics outperform the state of the art.

2 Related Work

2.1 Perceptually uniform color distance

A large amount of work has been done by color scientists around perceptual
color differences [31, 9, 22], where the required inputs of the proposed distances
are either reflectance spectra or the device-independent color components CIE
XYZ [31]. These features are obtained with particular devices such as spec-
trophotometer or photoelectric colorimeter [31]. It is known that neither the
euclidean distance between reflectance spectra nor the euclidean distance be-
tween XYZ vectors are perceptual, i.e. these distances can be higher for two
colors that look similar than for two colors that look different. Consequently,
some color spaces such as CIELAB or CIELUV have been designed to be more
perceptually uniform. In those spaces, specific color difference equations have
been proposed to improve perceptual uniformity over the simple euclidean dis-
tance [9]. The ∆E00 [22] distance is one nice example of such a distance. It cor-
responds to the difference perceived by a human looking at the two considered
colors under standard viewing conditions recommended by the CIE (illuminant
D65, illuminance of 1000 lx, etc.).

However, it is worth noting that in most of the computer vision applica-
tions, the available information does not take the form of a reflectance spectra
or some device-independent components, as assumed above. Indeed, the classi-
cal acquisition devices are cameras that use iterative complex transforms from
the irradiance (amount of light) collected by each CCD sensor cell to the pixel
intensity of the output image [13]. These device-dependent transforms are color
filtering, white-balancing, gamma correction, demosaicing, compression, etc. [34]
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which are designed to provide pleasant images and not to accurately measure
colors. Consequently, the available RGB components in color images do not al-
low us to get back to the original spectra or XYZ components. To overcome this
limitation, two main strategies have been suggested in the literature: either by
applying a default transformation from RGB components to L∗a∗b∗ (CIELAB
space) or L∗u∗v∗ (CIELUV space) assuming a given configuration, or by learning
a coordinate transform to actual L∗a∗b∗ components under particular conditions.

Using default transformations A classical strategy consists in using a default
transformation from the available RGB components to XYZ and then to L∗a∗b∗

or L∗u∗v∗ [1, 4, 11, 18]. This default transformation assumes an average gamma
correction of 2.2 [23], color primaries close to ITU-R BT.709 [24] and D65 illumi-

nant (Daylight). Finally, from the estimated L∗a∗b∗ or L∗u∗v∗ (denoted L̂∗a∗b∗

and L̂∗u∗v∗ respectively) of two pixels, one can make use of the euclidean dis-

tance. In the case of L∗a∗b∗, one can use L̂∗a∗b∗ to estimate more complex and

accurate distances such as ∆E00 via its estimate ∆̂E00 ([22]), that will be used
in our experimental study as a baseline. As discussed in the introduction, when
using this approach, the provided color distance characterizes the difference be-
tween the colors in the rendered image after the camera transformations and is
not related to the colors of the scene.

Learning coordinate transforms to L∗a∗b∗ For applications requiring the dis-
tances between the colors in the scene, the acquisition conditions are calibrated
first and then the images are acquired under these particular conditions [14,
15]. Therefore, the camera position and the light color, intensity and positions
are fixed and a set of images of different color patches are acquired. Meanwhile,
under the same exact conditions, a colorimeter measures the actual L∗a∗b∗ com-
ponents (in the scene) for each of these patches. In [15], they learn then the
best transform from camera RGB to actual L∗a∗b∗ components with a neural
network. In [14], they first apply the default transform presented before from

camera RGB to L̂∗a∗b∗ and then learn a polynomial regression (until quadratic

term) from the L̂∗a∗b∗ to the true L∗a∗b∗. However, it is worth mentioning that
in both cases the learned transforms are accurate only under these acquisition
conditions. Thus, these approaches can not be applied on most of the computer
vision applications where such an information is unavailable.

From our knowledge, no previous work has both underlined and answered
the problem of the approximations that are made during the estimation of the
L∗a∗b∗ components in the very frequent case of uncalibrated acquisitions. The
standard principle consisting in applying a default transform leads to distances
that are only coarsely perceptual with respect to the scene colors. We will see in
the rest of this paper that rather than sequentially moving from space to space
with inaccurate transforms, a better way consists in learning a perceptual metric
directly in the image rendered RGB space. This is a matter of metric learning
for which we present a short survey in the next section.
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2.2 Metric learning

Metric learning (see [3] for a survey) arises from the necessity for a lot of ap-
plications to accurately compare examples. The underlying idea is to define ap-
plication dependent metrics which are able to capture the idiosyncrasies of the
data at hand. Most of the existing work in metric learning is focused on learn-
ing a Mahalanobis-like distance of the form dM(x,x′) =

√
(x− x′)TM(x− x′),

where M is a positive semi-definite (PSD) matrix to optimize. Note that us-
ing a Cholesky decomposition of M, the Malahanobis distance can be seen as a
Euclidean distance computed after applying a learned data linear projection.

The work of [32] where the authors maximize the distance between dissim-
ilar points while maintaining a small distance between similar points has been
pioneering in this field. Following this idea, Weinberger and Saul [29] propose
to learn a PSD matrix dedicated to improve the k-nearest neighbors algorithm.
To do so, they force their metric to respect local constraints. Given triplets
(zi, zj, zk) where zj and zk belong to the neighborhood of zi, zi and zj being
of the same class, and zk being of opposite class, the constraints impose that zi
should be closer to zj than to zk with a margin ε. To overcome the PSD con-
straint, which requires a costly projection of M onto the cone of PSD matrices,
Davis et al. [8] optimize a Bregman divergence under some proximity constraints
between pairs of points. The underlying idea is to learn M such that it remains
close to a matrix M0 defined a-priori. If the Bregman divergence is finite, the
authors show that M is guaranteed to be PSD.

An important limitation of learning a unique global metric such as a Maha-
lanobis distance comes from the fact that no information about the structure of
the input space is taken into account. Moreover, since a Mahalanobis distance
boils down to projecting the data into a new space via a linear transformation, it
does not allow us to capture non linearity. Learning local metrics is one possible
way to deal with these two issues1. In [30], the authors propose a local version
of [29], where a clustering is performed as a preprocess and then a metric is
learned for each cluster. In [26], Wang et al. optimize a combination of metric
bases that are learned for some anchor points defined as the means of clusters
constructed, for example, by the K-Means algorithm. Other local metric learn-
ing algorithms have been recently proposed, only in a classification setting, such
as [33] which makes use of random forests and absolute position of points to
compute a local metric; in [10], a local metric is learned based on a conical com-
bination of Mahalanobis metrics and pair-wise similarities between the data; a
last example of this non exhaustive list comes from [21], where the authors learn
a mixture of local Mahalanobis distances.

3 Learning a perceptual color distance

In this section, we present a way to learn a perceptual distance that is invariant
across acquisition conditions. First, we explain how we have created an image

1 Note that kernel learning is another solution to consider non linearity in the data.
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dataset designed for this purpose. Then, making use of the advantages of learning
local metrics, we introduce our new algorithm that aims at accurately approxi-
mating a perceptual color distance in different parts of the RGB space. We end
this section by a theoretical analysis of our algorithm.

3.1 Creating the dataset

Given two color patches, we want to design a perceptual distance not disturbed
by the acquisition conditions. So we propose to use pairs of patches for which
we can measure the true perceptual distance under standard viewing conditions
and to image them under different other conditions.

The choice of the patches is key in this work since all the distances will be
learned from these pairs. Consequently, the colors of the patches have to be well
distributed in the RGB cube in order to be able to well approximate the color
distance between two new pairs that have not been seen in the training set.
Moreover, as we would like to learn a local perceptual distance, we need pairs of
patches whose colors are close from each other. According to [22], ∆E00 seems
to be a good candidate for that because it is designed to compare similar colors.
Finally, since hue, chroma and luminance differences impact the perceptual color
difference [22], the patches have to be chosen so that all these three variations
are represented among the pairs.

Given these three requirements, we propose to use two different well-known
sets of patches, namely the Farnsworth-Munsell 100 hue test and the Munsell
atlas (see Fig. 1). The Farnsworth-Munsell 100 hue test is one of the most fa-
mous color vision tests which consists in ordering 84 patches in the correct order
and any misplacement can point to some sort of color vision deficiency. Since
these 84 patches are well distributed on the hue wheel, their colors will cover a
large area of the RGB cube when imaging them under an important range of
acquisition conditions. Furthermore, consecutive patches are known to have very
small color differences and then, learning perceptual distances from such pairs
is a good purpose. This set is constituting the main part of our dataset. Nev-
ertheless, the colors of these patches first, are not highly saturated and second,
they mostly exhibit hue variations and relatively small luminance and chroma
differences. In order to cope with these weaknesses, we add to this dataset the
238 patches constituting the Munsell Student Color Set [19]. These patches are
characterized by more saturated colors and the pairs of similar patches mostly
exhibit luminance and chroma variations (since only the 5 principal and 5 inter-
mediate hues are provided in this student set).

To build the dataset, we first use a spectroradiometer (Minolta CS 1000)
in order to measure the spectra of each color patch of the Farnsworth set, the
spectra of the Munsell atlas patches being available online 2. Five measurements
have been done in our light cabinet and the final spectra are the average of each
measurement. From these spectra, we evaluate the L∗a∗b∗ coordinates of each
patch under D65 illuminant. Then, we evaluate the distance ∆E00 between all

2 https://www.uef.fi/spectral/spectral-database
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Fig. 1. Some images from our dataset showing (first row) the 84 used Farnsworth-
Munsell patches or (second row) the 238 Munsell patches under different conditions.

the pairs of color patches [22]. Since we need patch pairs whose colors are similar,
following the CIE recommendations (CIE Standard DS 014-6/E:2012), we select
among the C2

84 + C2
238 available pairs only the 223 that are characterized by a

Euclidean distance in the CIELAB space (denoted ∆Eab) less than 5.
Note that the available ∆E00 have been evaluated in the standard view-

ing conditions recommended by the CIE for color difference assessment and we
would like to obtain these reference distances whatever the acquisition condi-
tions. Consequently, we propose to use 4 different cameras, namely Kodak DCS
Pro 14n, Konica Minolta Dimage Z3, Nikon Coolpix S6150 and Sony DCR-SR32
and a large variety of lights, viewpoints and backgrounds (since background also
perturbs the colors of the patches). For each camera, we acquire 50 images of
each Farnsworth pair and 15 of each Munsell pair (overall, 41, 800 imaged pairs).
Finally, after all these measurements and acquisitions, we have for each image
of a pair, two image rendered RGB vectors and one reference distance ∆E00.

3.2 Local metric learning algorithm

In this section, our objective is to approximate the reference distance ∆E00

by a metric learning approach in the RGB space which aims at optimizing K
local metrics plus one global metric. For this task, we perform a preprocess
by dividing the RGB space into K local parts thanks to a clustering step. From
this, we deduce K+1 regions defining a partition C0, C1, . . . , CK over the possible
pairs of patches. A pair p = (x,x′) belongs to a region Cj , 1 ≤ j ≤ K if both
x and x′ belong to the same cluster j, otherwise p is assigned to region C0. In
other words, each region Cj corresponds to pairs related to cluster j, while C0

contains the remaining pairs whose points do not belong to the same cluster.
Then, we approximate ∆E00 by learning a Mahalanobis-like distance in every
Cj (j = 0, 1, . . . ,K), represented by its associated PSD 3× 3 matrix Mj.

Each metric learning step is done from a finite-size training sample of nj

triplets Tj = {(xi,x
′
i, ∆E00)}nj

i=1 where xi and x′
i represent color patches be-

longing to the same region Cj and ∆E00(xi,x
′
i) (∆E00 for the sake of simplic-

ity) their associated perceptual distance value. We define a loss function l on any

pair of patches (x,x′): l(Mj, (x,x
′, ∆E00)) =

∣∣∣∆2
Tj

−∆E00(x,x
′)2

∣∣∣ where∆Tj =
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Algorithm 1: Local metric learning

input : A training set S of patches; a parameter K ≥ 2
output: K local Mahalanobis distances and one global metric
begin

Run K-means on S and deduce K+1 training subsets Tj (j = 0, 1 . . . ,K) of
triplets Tj = {(xi,x

′
i,∆E00)}nj

i=1 (where xi,x
′
i ∈ Cj and ∆Eab(xi,x

′
i) < 5)

for j = 0 → K do
Learn Mj by solving the convex optimization Problem (1) using Tj

√
(x − x′)TMj(x− x′), l measures the error made by a learned distance Mj. We

denote the empirical error over Tj by ε̂Tj (Mj) =
1
nj

∑
(x,x′,∆E00)∈Tj

l(Mj, (x,x
′, ∆E00)).

We suggest to learn the matrix Mj that minimizes ε̂Tj via the following regu-
larized problem:

argmin
Mj�0

ε̂Tj (Mj) + λj‖Mj‖2F , (1)

where λj > 0 is a regularization parameter and ‖ · ‖F denotes the Frobenius
norm. To obtain a proper distance, Mj must be PSD (denoted by Mj � 0) and
thus has to be projected onto the PSD cone as previously explained. Due to
the simplicity of Mj (3 × 3 matrix), this operation is not costly 3. It is worth
noting that our optimization problem takes the form of a simple regularized
least absolute deviation formulation. The interest of using the least absolute
deviation, rather than a regularized least square, comes from the fact that it
enables accurate estimates of small ∆E00 values.

The pseudo-code of our metric learning algorithm is presented in Alg. 1. Note
that to solve the convex problem 1, we use a classical interior points approach.
Moreover, parameter λj is tuned by cross-validation.

Discussion about Local versus Global Metric Note that in our approach, the met-
rics learned in the K regions C1, . . . , CK are local metrics while the one learned
for region C0 is rather a global metric considering pairs that do not fall in the
same region. Beyond the fact that such a setting will allow us to derive gener-
alization guarantees on our algorithm, it constitutes a straightforward solution
to deal with patches at test time that would not be concerned by the same local
metric in the color space. In this case, we make use of the matrix M0 associ-
ated to partition C0. Another possible solution may consist in resorting to a
Gaussian embedding of the local metrics. However, because this solution would
imply learning additional parameters, we suggest in this paper to make use of
this simple and efficient (parameters-wise) strategy. In the segmentation exper-
iments of this paper, we will notice that M0 is used in only ∼20% of the cases.
Finally, note that if K = 1, this boils down to learning only one global metric
over the whole training sample. In the next section, we justify the consistency
of this approach.

3 We noticed during our experiments that Mj is, most of the time, PSD without
requiring any projection on the cone.
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3.3 Theoretical study

In this part, we provide a generalization bound justifying the consistency of
our method. It is derived by considering (i) a multinomial distribution over the
regions, and (ii) per region generalization guarantees that are obtained with the
uniform stability framework [5].

We assume that the training sample T = ∪K
j=0Tj is drawn from an unknown

distribution P such that for any (x,x′, ∆E00) ∼ P , ∆E00(x,x
′) ≤ ∆max, with

∆max the maximum distance value used in our context. We assume any input
instance x to be normalized such that ‖x‖ ≤ 1, where ‖ · ‖ is the L2-norm4.

The K + 1 regions C0, . . . , CK define a partition of the support of P . In
partition Cj , let Dj = max(x,x′,∆E00)∼P (Cj)(‖x−x′‖) be the maximum distance
between two elements and P (Cj) be the marginal distribution.

Let M = {M0,M1, . . . ,MK} be the K+1 matrices learned by our Alg. 1. We

define the true error associated to M by ε(M) =
∑K

j=0 εP (Cj)(Mj)P (Cj) where
εP (Cj)(Mj) = E(x,x′,∆E00)∼P (Cj)l(Mj, (x,x

′, ∆E00)) is the local true risk for Cj .

The empirical error over T of size n is defined as ε̂T (M) = 1
n

∑K
j=0 nj ε̂Tj (Mj)

where ε̂Tj (Mj) =
1
nj

∑
(x,x′,∆E00)∈Tj

l(Mj, (x,x
′, ∆E00)) is the empirical risk of

Tj .

Generalization bound per region Cj To begin with, for any learned local
matrix Mj , we provide a bound on its associated local true risk εP (Cj)(Mj) in
function of the empirical risk ε̂Tj (Mj) over Tj.

Lemma 1 (Generalization bound per region). With probability 1 − δ, for
any matrix Mj related to a region Cj, 0 ≤ j ≤ K, learned with Alg. 1, we have:

|εP (Cj)(Mj)− ε̂Tj (Mj)| ≤
2D4

j

λjnj
+

(
4D4

j

λj
+∆max(

2D2
j√
λj

+2∆max)

)√
ln( 2

δ
)

2nj
.

The proof of this lemma is provided in the supplementary material and is based
on the uniform stability framework. It shows that the consistency is achieved in
each region with a convergence rate in O(1/

√
n). When the region is compact,

the quantity Dj is rather small making the bound tighter.

Generalization bound for Alg. 1 The generalization bound of our algo-
rithm is based on the fact that the different marginals P (Cj) can be inter-
preted as the parameters of a multinomial distribution. Thus, (n0, n1, . . . , nK) is
then a IID multinomial random variable with parameters n =

∑n
j=0 nj and

(P (C0), P (C1), . . . , P (CK)). Our result makes use of the Bretagnolle-Huber-
Carol concentration inequality for multinomial distributions [25] which is re-
called in the supplementary material for the sake of completeness (this result
has also been used in [35] in another context).

We are now ready to introduce the main theorem of the paper.

4 Since we work in the RGB cube, any patch belongs to [0; 255]3 and it is easy to
normalize each coordinate by 255

√
3.
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Theorem 1 Let C0, C1, . . . , Ck be the regions considered, then for any set of
metrics M = {M0, . . . ,MK} learned by Alg. 1 from a data sample T of n pairs,
we have with probability at least 1− δ that

ε(M) ≤ ε̂T (M) + LB

√
2(K + 1) ln 2 + 2 ln 2/δ

n
+

2(KD4 + 1)

λn

+

(
4(KD4 + 1)

λ
+∆max(

2(KD2 + 1)√
λ

+2(K + 1)∆max)

)√
ln( 4(K+1)

δ
)

2n
,

where D = max1≤j≤K Dj, LB = max{∆max√
λ

, ∆2
max} is the bound on the loss

function and λ = min0≤j≤K λj is the minimum regularization parameter among
the K + 1 learning problems used in Alg. 1.

The proof of this theorem is provided in the supplementary material. The first
term after the empirical risk comes from the application of the Bretagnolle-
Huber-Carol inequality with a confidence parameter 1− δ/2. The last terms are
derived by applying the per region consistency Lemma 1 to all the regions with
a confidence parameter 1− δ/2(K + 1) and the final result is derived thanks to
the union bound.

This result justifies the global consistency of our approach with a standard
convergence rate in O(1/

√
n). We can remark that if the local regions C1, . . . , Cn

are rather small (i.e. D is significantly smaller than 1), then the last part of
the bound will not suffer too much on the number of regions. On the other
hand, there is also a trade-off between the number/size of regions considered and
the number of instances falling in each region. It is important to have enough
examples to learn good models.

4 Experiments

Evaluating the contribution of a metric learning algorithm can be done in two
ways: (1) assessing the quality of the metric itself, and (2) measuring its impact
once plugged in an application. In the following, we first evaluate the general-
ization ability of the learned metrics on our dataset. Then, we measure their
contribution in a color segmentation application.

4.1 Evaluation on our dataset

To evaluate the generalization ability of the metrics, we conduct two experi-
ments: We assess the behavior of our approach when it is applied (i) on new
unseen colors and (ii) on new patches coming from a different unseen camera.
In these experiments, we consider all the pairs of patches (x,x′) of our dataset
characterized by a ∆Eab < 5, resulting in 41, 800 pairs. Due to the large amount
of data, combined with the relative simplicity of the 3×3 local metrics, we notice
that the algorithm is rather insensible to the choice of λ. Therefore, we use λ = 1
in all our experiments. The displayed results are the average over 5 runs.
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(a) Generalization to new colors.
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(b) Generalization to new cameras.

Fig. 2. (a): Generalization of the learned metrics to new colors; (b) Generalization of
the learned metrics to new cameras. For (a) and (b), we plotted the Mean and STRESS
values as a function of the number of clusters. The horizontal dashed line represents

the STRESS baseline of ∆̂E00. For the sake of readability, we have not plotted the

mean baseline of ∆̂E00 at 1.70.

To estimate the performance of our metric we use two criteria we want to
make as small as possible. The first one is the mean absolute difference, computed
over a test set TS, between the learned metric ∆T - i.e. the metric learned with
Alg. 1 - w.r.t. a training set of pairs T and the reference ∆E00. As a second
criterion, we use the STRESS5 measure [17]. Roughly speaking, it evaluates
quadratic differences between the learned metric ∆T and the reference ∆E00.
We compare our approach to the state of the art where ∆T is replaced by

∆̂E00 [22] in both criteria, i.e. transforming from rendered image RGB to L̂∗a∗b∗

and computing the ∆̂E00 distance.

Generalization to unseen colors In this experiment, we perform a 6-fold
cross validation procedure over the set of patches. Thus we obtain, on average,
27927 training pairs and 13873 testing pairs. The results are shown on Fig. 2(a)
according to an increasing number of clusters (from 1 to 70). We can see that

using our learned metric ∆T instead of the state of the art estimate ∆̂E00 [22]
enables significant improvements according to both criteria (where the baselines
are 1.70 for the mean and 48.05 for the STRESS). Note that from 50 clusters, the
quality of the learned metric declines slightly while remaining much better than

∆̂E00. Figure 2(a) shows that K = 20 seems to be a good compromise between
a high algorithmic complexity (the higher K, the larger the number of learned

5 STandardized REsidual Sum of Squares.
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metrics) and good performances of the models. When K = 20, using a Student’s
t test over the mean absolute differences and a Fisher test over the STRESS, our
method is significantly better than the state of the art with a p-value < 1−10.
Figure 2(a) also emphasizes the interest of learning several local metrics. Indeed,
optimizing 20 local metrics rather than only one is significantly better with a
p-value smaller than 0.001 for both criteria.

Generalization to unseen cameras In this experiment, our model is learned
according to a 4-fold cross validation procedure such that each fold corresponds
to the pairs coming from a given camera. Thus we learn the metric on a set
of 31350 pairs and test it on a set of 10450 pairs. Therefore, this task is more
complicated than before. The results are presented in Fig. 2(b). We can note
that our approach always outperforms the state of the art for the mean criterion
(of baseline 1.70). Regarding the STRESS, we are on average better when using
between 5 to 60 clusters. Beyond 65 clusters, the performances decrease signifi-
cantly. This behavior likely describes an overfitting phenomenon due to the fact
that a lot of local metrics have been learned that are more and more specialized
for 3 out of 4 cameras, and unable to generalize well to the fourth one. For this
series of experiments, K = 20 is still a good value to deal with the trade-off
between complexity and efficiency. Using a Student’s t test over the mean abso-
lute differences and a Fisher test over the STRESS, our method is significantly
better with p-values respectively < 1−10 and < 0.006. The interest of learning
several local metrics rather than only one is still confirmed. Applying statisti-
cal comparison tests between K = 20 and K = 1 leads to small p-values < 0.001.

Thus for both series of experiments, K = 20 appears to be a good number of
clusters and allows significant improvements. Therefore, we suggest to take this
value in the next section to tackle a segmentation problem. Before that, let us
finish this section by geometrically showing the interest of learning local met-
rics. Figure 3(a) shows ellipsoids uniformly distributed in the RGB space whose
surface corresponds to the RGB colors lying at the corresponding learned local
distance of 1 from the center of the ellipsoid. It is worth noting that the vari-
ability of the shapes and orientations of the ellipsoids is high, meaning that each
local metric could capture local specificities of the color space. The experimental
results presented in the next section will prove this claim.

4.2 Application to image segmentation

In this experiment, we evaluate the performance of our approach in a color based
image segmentation application. We propose to use the approach from [4] that
suggests a nice extension of the classical mean-shift algorithm by accounting
color information. Furthermore, the authors show that the more perceptual the
used distance, the better the results. Especially, by using the default transform

from the available camera RGB to the L̂∗u∗v∗, they significantly improve the
segmentation results over the simple RGB coordinates. Our aim is not to pro-
pose a new segmentation algorithm but to use the exact algorithm proposed
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Fig. 3. (a) Interest of learning local metrics. We took 27 points uniformly distributed on
the RGB cube. Around each point we plotted an ellipsoid where the surface corresponds
to the RGB colors lying at a learned distance of 1. In this case we used the metric
learned by our algorithm using K = 20. (b) Boundary Displacement Error (lower is
better) versus the average segment size. (c) Probabilistic Rand Index (higher is better)
versus the average segment size.

in [4] working in the RGB space and to replace in their code (publicly available)
the distance between two colors with our learned color distance ∆T . By this
way, we can compare the perceptual property of our distance with this of the

recommended default approach (euclidean distance in the L̂∗u∗v∗ space).

Therefore, we take exactly the same protocol as [4]. We use the same 200
images taken from the well-known Berkeley dataset and the associated ground-
truth that is constituted by 1087 segmented images provided by humans. In
order to assess the quality of the segmentation, as recommended by [4], we use
the average Boundary Displacement Error (BDE) and the Probabilistic Rand
Index (PRI). Note that the better the quality of the segmentation, the lower
the BDE and the higher the PRI. The segmentation algorithm proposed in [4]
has one main parameter which is the color distance threshold under which two
neighbor pixels (or sets of pixels) have to be merged in the same segment. As
in [4], we plot the evolution of the quality criteria versus the average segment
size (see Figs. 3(b) and 3(c)). For comparison, we have run the code from [4] for
the parameters providing the best results in their paper, namely ”CMS Luv/N.”,

corresponding to their color mean-shift (CMS) applied in the L̂∗u∗v∗ color space.
The results of CMS applied in the RGB color space with the classical euclidean
distance are plotted as ”CMS RGB/N.” and those of CMS applied with our color
distance in the RGB color space are plotted as ”CMS Local Metric/N.”.

For both criteria, we can see that our learned color distance significantly im-
proves the quality of the results over the two other approaches, i.e. it provides
a segmentation that is closer to the one computed by humans. This is truer
when the segment size is increasing (right part of the plots). It is important to
understand that increasing the average segment size (moving to the right on
the plots) is like merging neighbor segments in the images. So by analyzing the
curves, we can see that for the classical approaches (”CMS Luv/N.” and ”CMS
RGB/N.”), it seems that the segments that are merged together when moving
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Fig. 4. Segmentation illustration. When the number of clusters is low (around 50), the

segmentation provided by RGB or L̂∗u∗v∗ are far from the ground truth, unlike our
approach which provides nice results. To get the same perceptual result, both methods
require about 500 clusters.

to the right on the plot are not the ones that would be merged by humans.
That is why both criteria are worst (BDE increases and PRI decreases) on the
right for these methods. On the other hand, it seems that our distance is more
accurate when merging neighbor segments since for high average segment sizes,
our results are much better. This point can be observed in Fig. 4, where the seg-
ment size is high, i.e. when the number of clusters is low (50), the segmentation

provided by RGB or L̂∗u∗v∗ are far from the ground truth, unlike our approach
which provides nice results. To get the same perceptual result, both methods
require about 500 clusters. We provide more segmentation comparisons in the
supplementary material.

5 Conclusion

In this paper, we presented a new local metric learning approach for approx-
imating perceptual distances directly in the rendered image RGB space. Our
method outperforms the state of the art for generalizing to unseen colors and
to unseen camera distortions and also in a color image segmentation task. The
model is both efficient - for each pair one only needs to find the two clusters of
the patches and to apply a 3 × 3 matrix - and expressive thanks to the local
aspect allowing us to model different distortions in the RGB space. Moreover,
we derived a generalization bound ensuring the consistency of the learning ap-
proach. Finally, we designed a dataset of color patches which can play the role
of a benchmark for the computer vision community.

Future work will include the use of metric combination approaches together
with more complex regularizers on the set of models (mixed and nuclear norms
for example). Another perspective concerns the spatial continuity of the learned
metrics. Even though Fig. 3(a) shows ellipsoids that tend to be locally regular
leading to a certain spatial continuity, our model does not explicitely deal with
this issue. One solution may consist in resorting to a Gaussian embedding of the
local metrics. From a practical side, the development of transfer learning methods
for improving the generalization to unknown devices could be an interesting
direction. Another different perspective would be to learn photometric invariant
distances.
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1 Overview of the supplementary material

This supplementary material is organised into two parts. In Section 2 we provide the proofs of the lemma
and the theorem presented in Section 3.3 of the paper, while Section 3 presents some examples of image
segmentation.

2 Theoretical analysis

This section presents the proofs of Lemma 1 and Theorem 1 from Section 3.3 of the paper. Lemma 1 is
proved in Section 2.1 and Theorem 1 is proved in Section 2.2.

2.1 Generalization bound per region Cj

First, we recall our optimization problem considered in each region Cj :

argmin
Mj�0

FTj
(Mj) (1)

where

FTj
(Mj) = ε̂Tj

(Mj) + λj‖Mj‖2F ,

ε̂Tj
(Mj) =

1

nj

∑

(x,x′,∆E00)∈Tj

l(Mj, (x,x
′, ∆E00)),

and l(Mj, (x,x
′, ∆E00)) =

∣∣∣
(
x− x′)TMj(x− x′

)
−∆E00 (x,x

′)
2
∣∣∣ .

Here ε̂Tj
(Mj) stands for the empirical risk of a matrix Mj over a training set Tj , of size nj , drawn from

an unknown distribution P (Cj). The true risk εP (Cj)(Mj) is defined as follows:

εP (Cj)(Mj) = E(x,x′,∆E00)∼P (Cj)

[
l(Mj, (x,x

′, ∆E00))
]

.

In this section, T ij denotes the training set obtained from Tj by replacing the ith example of Tj by a
new independent one. Moreover, we have ∆max = max0≤j≤K

{
max(x,x′,∆E00)∼P (Cj) {∆E00 (x,x

′)}
}

and Dj = max(x,x′,∆E00)∼P (Cj) (‖x− x′‖) ≤ 11.
To derive such a generalization bound, we need to consider loss functions that fulfill two properties:

k-lipschitz continuity (Definition A) and (σ,m)-admissibility (Definition B).

1 We assume the examples to be normalized such that ‖x‖ ≤ 1.
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Definition A (k-lipschitz continuity) A loss function l(Mj, (x,x
′, ∆E00)) is k-lipschitz w.r.t. its first ar-

gument if, for any matrices Mj, M
′
j and any example (x,x′, ∆E00), there exists k ≥ 0 such that:

∣∣l(Mj, (x,x
′, ∆E00))− l(M′j, (x,x′, ∆E00))

∣∣ ≤ k‖Mj −M′j‖F .

This k-lipschitz property ensures that the loss deviation does not exceed the deviation between matrices
Mj and M′j with respect to a positive constant k.

Definition B ((σ,m)-admissibility) A loss function l(Mj, (x,x
′, ∆E00)) is (σ,m)-admissible, w.r.t. Mj,

if it is convex w.r.t. its first argument and for two examples (x,x′, ∆E00 (x,x
′)) and (t, t′, ∆E00 (t, t

′)),
we have:
∣∣l(Mj, (x,x

′, ∆E00 (x,x
′)))− l(Mj, (t, t

′, ∆E00 (t, t
′)))
∣∣ ≤ σ |∆E00 (x,x

′)−∆E00 (t, t
′)|+m.

Definition B bounds the difference between the losses of two examples by a value only related to the
∆E00 values plus a constant independent from Mj. Let us introduce a last concept which is required to
derive a generalization bound.

Definition C (Uniform stability) In a region Cj , a learning algorithm has a uniform stability in Knj
, with

K ≥ 0 a constant, if ∀i,

sup
(x,x′,∆E00)∼P (Cj)

∣∣l(Mj, (x,x
′, ∆E00))− l(Mi

j, (x,x
′, ∆E00))

∣∣≤ K
nj

,

where Mj is the matrix learned on the training set Tj and Mi
j is the matrix learned on the training set T ij .

The uniform stability guarantees that the solutions learned with two close training sets are not significantly
different and that the variation converges in O(1/nj).

To prove Lemma 1 of the paper, we need several additional lemmas and one more theorem which are
not presented in the paper. First we show that our loss is k-lipschitz continuous, (σ,m)-admissible and
that our algorithm respects the property of uniform stability. For the sake of readability, we number these
lemmas and this theorem with capital letters.

Lemma A (k-lipschitz continuity) Let Mj and M′j be two matrices for a region Cj and (x,x′, ∆E00) be
an example. Our loss l(Mj, (x,x

′, ∆E00)) is k-lipschitz with k = D2
j .

Proof.
∣∣l(Mj, (x,x

′, ∆E00))− l(M′j, (x,x′, ∆E00))
∣∣

=
∣∣∣
∣∣∣
(
x− x′)TMj(x− x′

)
−∆E00 (x,x

′)
2
∣∣∣−
∣∣∣
(
x− x′)TM′j(x− x′

)
−∆E00 (x,x

′)
2
∣∣∣
∣∣∣

≤
∣∣(x− x′)TMj(x− x′

)
−
(
x− x′)TM′j(x− x′

)∣∣ (2.1)

=
∣∣(x− x′)T

(
Mj −M′j

)
(x− x′

)∣∣
≤ ‖x− x′‖‖Mj −M′j‖F‖x− x′‖ (2.2)

≤ D2
j‖Mj −M′j‖F (2.3)

Inequality (2.1) is due to the triangle inequality, (2.2) is obtained by application of the Cauchy-Schwarz
inequality and some classical norm properties. (2.3) comes from the definition ofDj . Setting k = D2

j gives
the Lemma.

We now provide a lemma that will help to prove Lemma C on the (σ,m)-admissibility of our loss
function.

Lemma B Let Mj be an optimal solution of Problem (1), we have

‖Mj‖ ≤
∆max√
λj

.
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Proof. Since Mj is an optimal solution of Problem (1), we have then:

FTj
(Mj) ≤ FTj

(0)

⇔ 1

nj

∑

(x,x′,∆E00)∈Tj

l(Mj, (x,x
′, ∆E00)) + λj‖Mj‖2F ≤

1

nj

∑

(x,x′,∆E00)∈Tj

l(0, (x,x′, ∆E00)) + λj‖0‖2F

⇒ λj‖Mj‖2F ≤
1

nj

∑

(x,x′,∆E00)∈Tj

l(0, (x,x′, ∆E00)) (3.1)

⇒ λj‖Mj‖2F ≤ ∆2
max (3.2)

⇒ ‖Mj‖F ≤
∆max√
λj

.

Inequality (3.1) comes from the fact that our loss is always positive and that ‖0‖F = 0. (3.2) is obtained
by noting that l(0, (x,x′, ∆E00)) ≤ ∆2

max.

Lemma C ((σ,m)-admissibility) Let (x,x′, ∆E00 (x,x
′)) and (t, t′, ∆E00 (t, t

′)) be two examples and
Mj be the optimal solution of Problem (1). The loss l(Mj, (x,x

′, ∆E00)) is (σ,m)-admissible with σ =

2∆max and m =
2D2

j∆max√
λj

.

Proof.
∣∣l(Mj, (x,x

′, ∆E00 (x,x
′)))− l(Mj, (t, t

′, ∆E00 (t, t
′)))
∣∣

=
∣∣∣
∣∣∣
(
x− x′)TMj(x− x′

)
−∆E00 (x,x

′)
2
∣∣∣−
∣∣∣
(
t− t′)TMj(t− t′

)
−∆E00 (t, t

′)
2
∣∣∣
∣∣∣

≤
∣∣(x− x′)TMj(x− x′

)
−
(
t− t′)TMj(t− t′

)∣∣+
∣∣∣∆E00 (t, t

′)
2 −∆E00 (x,x

′)
2
∣∣∣ (4.1)

≤
∣∣(x− x′)TMj(x− x′

)∣∣+
∣∣(t− t′)TMj(t− t′

)∣∣+
∣∣∣∆E00 (t, t

′)
2 −∆E00 (x,x

′)
2
∣∣∣ (4.2)

≤ 2 max
(x,x′)

{∣∣(x− x′)TMj(x− x′
)∣∣}+

∣∣∣∆E00 (t, t
′)
2 −∆E00 (x,x

′)
2
∣∣∣

≤
2D2

j∆max√
λj

+
∣∣∣∆E00 (t, t

′)
2 −∆E00 (x,x

′)
2
∣∣∣ (4.3)

≤
2D2

j∆max√
λj

+ |∆E00 (t, t
′) +∆E00 (x,x

′)| |∆E00 (t, t
′)−∆E00 (x,x

′)|

≤
2D2

j∆max√
λj

+ 2∆max |∆E00 (t, t
′)−∆E00 (x,x

′)| .

Inequalities (4.1) and (4.2) are obtained by applying the triangle inequality respectively twice and once,
(4.3) comes from the fact that ‖Mj‖F ≤ ∆max√

λj

(Lemma B) and that ‖x − x′‖ ≤ Dj . Setting σ = 2∆max

and m =
2D2

j∆max√
λj

gives the Lemma.

We will now prove the uniform stability of our algorithm but before to present this proof, we need the
following Lemma.

Lemma D Let FTj
() and FT i

j
() be the functions to optimize, Mj and Mi

j their corresponding minimizers,

and λj the regularization parameter used in our algorithm. Let ∆Mj = Mj −Mi
j, then, we have, for any

t ∈ [0, 1],

‖Mj‖2F − ‖Mj − t∆Mj‖2F + ‖Mi
j‖2F − ‖Mi

j + t∆Mj‖2F ≤
2kt

λjnj
‖∆Mj‖F . (5)
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Proof. This proof is similar to the proof of Lemma 20 in [1] which we recall for the sake of completeness.
ε̂T i

j
() is a convex function, thus, for any t ∈ [0, 1], we can write:

ε̂T i
j
(Mj − t∆Mj)− ε̂T i

j
(Mj) ≤ t

(
ε̂T i

j
(Mi

j)− ε̂T i
j
(Mj)

)
, (6)

ε̂T i
j
(Mi

j + t∆Mj)− ε̂T i
j
(Mi

j) ≤ t
(
ε̂T i

j
(Mj)− ε̂T i

j
(Mi

j)
)

. (7)

By summing inequalities (6) and (7) we obtain

ε̂T i
j
(Mj − t∆Mj)− ε̂T i

j
(Mj) + ε̂T i

j
(Mi

j + t∆Mj)− ε̂T i
j
(Mi

j) ≤ 0. (8)

Since Mj and Mi
j are minimizers of FTj

() and FT i
j
(), we can write:

FTj
(Mj)− FTj

(Mj − t∆Mj) ≤ 0, (9)

FT i
j
(Mi

j)− FT i
j
(Mi

j + t∆Mj) ≤ 0. (10)

By summing inequalities (9) and (10), we obtain

ε̂Tj
(Mj)− ε̂Tj

(Mj − t∆Mj) + λj‖Mj‖2F − λj‖Mj − t∆Mj‖2F+
ε̂T i

j
(Mi

j)− ε̂T i
j
(Mi

j + t∆Mj) + λj‖Mi
j‖2F − λj‖Mi

j + t∆Mj‖2F ≤ 0. (11)

We can now sum inequalities (8) and (11) to obtain

ε̂Tj
(Mj)− ε̂T i

j
(Mj)− ε̂Tj

(Mj − t∆Mj) + ε̂T i
j
(Mj − t∆Mj)+

λj‖Mj‖2F − λj‖Mj − t∆Mj‖2F + λj‖Mi
j‖2F − λj‖Mi

j + t∆Mj‖2F ≤ 0. (12)

From (12), we can write:

λj‖Mj‖2F − λj‖Mj − t∆Mj‖2F + λj‖Mi
j‖2F − λj‖Mi

j + t∆Mj‖2F ≤ B (13)

with

B = ε̂T i
j
(Mj)− ε̂Tj

(Mj) + ε̂Tj
(Mj − t∆Mj)− ε̂T i

j
(Mj − t∆Mj).

We are now looking for a bound on B:

B ≤
∣∣∣ε̂Tj

(Mj − t∆Mj)− ε̂T i
j
(Mj − t∆Mj) + ε̂T i

j
(Mj)− ε̂Tj

(Mj)
∣∣∣

≤ 1

nj

∣∣∣∣∣∣
∑

(x,x′,∆E00)∈Tj

l(Mj − t∆Mj, (x,x
′, ∆E00))−

∑

(t,t′,∆E00)∈T i
j

l(Mj − t∆Mj, (t, t
′, ∆E00)) +

∑

(t,t′,∆E00)∈T i
j

l(Mj, (t, t
′, ∆E00))−

∑

(x,x′,∆E00)∈Tj

l(Mj, (x,x
′, ∆E00))

∣∣∣∣∣∣

=
1

nj

∣∣l(Mj − t∆Mj, (xi,x
′
i, ∆E00))− l(Mj − t∆Mj, (ti, t

′
i, ∆E00)) +

l(Mj, (ti, t
′
i, ∆E00))− l(Mj, (xi,x

′
i, ∆E00))

∣∣ (14.1)

≤ 1

nj

(∣∣l(Mj − t∆Mj, (xi,x
′
i, ∆E00))− l(Mj, (xi,x

′
i, ∆E00))

∣∣ +
∣∣l(Mj, (ti, t

′
i, ∆E00))− l(Mj − t∆Mj, (ti, t

′
i, ∆E00))

∣∣) (14.2)

≤ 1

nj

(
k‖Mj − t∆Mj −Mj‖F + k‖Mj −Mj + t∆Mj‖F

)
(14.3)

≤ 2kt

nj
‖∆Mj‖F .
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Equality (14.1) comes from the fact that Tj and T ij only differ by their ith example, inequality (14.2) is due
to the triangle inequality and (14.3) is obtained thanks to the k-lipschitz property of our loss (Lemma A).

Then combining the bound on B with equation (13) and dividing both sides by λj gives the Lemma.

We can now show the uniform stability property of the approach.

Lemma E (Uniform stability) Given a training sample Tj of nj examples drawn i.i.d. from P (Cj), our

algorithm has a uniform stability in Knj
with K =

2D4
j

λj
.

Proof. By setting t = 1
2 in Lemma D, one can obtain for the left hand side:

‖Mj‖2F − ‖Mj −
1

2
∆Mj‖2F + ‖Mi

j‖2F − ‖Mi
j +

1

2
∆Mj‖2F =

1

2
‖∆Mj‖2F

and thus:

1

2
‖∆Mj‖2F ≤

2k 1
2

λjnj
‖∆Mj‖F ,

which implies

‖∆Mj‖F ≤
2k

λjnj
.

Since our loss is k-lipschitz (Lemma A) we have:
∣∣l(Mj, (x,x

′, ∆E00))− l(Mi
j, (x,x

′, ∆E00))
∣∣ ≤ k‖∆Mj‖F

≤ 2k2

λjnj
.

In particular,

sup
(x,x′,∆E00)

∣∣l(Mj, (x,x
′, ∆E00))− l(M′j, (x,x′, ∆E00))

∣∣ ≤ 2k2

λjnj
.

By recalling that k = D2
j (Lemma A) and setting K = 2k2

λj
, we get the lemma.

We now recall the McDiarmid inequality [2], used to prove our main theorem.

Theorem A (McDiarmid inequality) Let X1, ..., Xn be n independent random variables taking values in
X and let Z = f(X1, ..., Xn). If for each 1 ≤ i ≤ n, there exists a constant ci such that

sup
x1,...,xn,x′

i∈X
|f(x1, ..., xn)− f(x1, ..., x′i, ..., xn)| ≤ ci,∀1 ≤ i ≤ n,

then for any ε > 0,Pr [|Z − E [Z]| ≥ ε] ≤ 2 exp

( −2ε2∑n
i=1 c

2
i

)
.

Using Lemma E about the stability of our algorithm and the McDiarmid inequality we can derive our
generalization bound. For this purpose, we replace Z by RTj

= εP (Cj)(Mj)− ε̂Tj
(Mj) in Theorem A and

we need to bound ETj

[
RTj

]
and

∣∣∣RTj
−RT i

j

∣∣∣, which is done in the following two lemmas.

Lemma F For any learning method of estimation error RTj
and satisfying a uniform stability in Knj

, we
have

ETj

[
RTj

]
≤ K
nj

.
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Proof.

ETj

[
RTj

]
≤ ETj

[
E(x,x′,∆E00)

[
l(Mj, (x,x

′, ∆E00))
]
− ε̂Tj

(Mj)
]

≤ ETj ,(x,x′,∆E00)




∣∣∣∣∣∣∣
l(Mj, (x,x

′, ∆E00))−
1

nj

∑

(xk,x′
k,∆E00)∈Tj

l(Mj, (xk,x
′
k, ∆E00))

∣∣∣∣∣∣∣




≤ ETj ,(x,x′,∆E00)




∣∣∣∣∣∣∣
1

nj

∑

(xk,x′
k,∆E00)∈Tj

(
l(Mj, (x,x

′, ∆E00))− l(Mj, (xk,x
′
k, ∆E00))

)
∣∣∣∣∣∣∣




≤ ETj ,(x,x′,∆E00)




∣∣∣∣∣∣∣
1

nj

∑

(xk,x′
k,∆E00)∈Tj

(
l(Mk

j , (xk,x
′
k, ∆E00))− l(Mj, (xk,x

′
k, ∆E00))

)
∣∣∣∣∣∣∣




(15.1)

≤ K
nj

. (15.2)

Inequality (15.1) comes from the fact that Tj and (x,x′, ∆E00) are drawn i.i.d. from the distribution P (Cj)
and thus we do not change the expected value by replacing one example with another, (15.2) is obtained by
applying triangle inequality followed by the property of uniform stability (Lemma E).

Lemma G For any matrix Mj learned by our algorithm using nj training examples, and any loss function
l satisfying the (σ,m)-admissibility, we have

∣∣∣RTj
−RTk

j

∣∣∣ ≤ 2K + (∆maxσ +m)

nj
.

Proof.
∣∣∣RTj

−RT i
j

∣∣∣ =
∣∣∣εP (Cj)(Mj)− ε̂Tj

(Mj)−
(
εP (Cj)(M

i
j)− ε̂T i

j
(Mi

j)
)∣∣∣

=
∣∣∣εP (Cj)(Mj)− ε̂Tj

(Mj)− εP (Cj)(M
i
j) + ε̂T i

j
(Mi

j)− ε̂Tj
(Mi

j) + ε̂Tj
(Mi

j)
∣∣∣

≤
∣∣εP (Cj)(Mj)− εP (Cj)(M

i
j)
∣∣+
∣∣∣ε̂Tj

(Mi
j)− ε̂Tj

(Mj)
∣∣∣+
∣∣∣ε̂T i

j
(Mi

j)− ε̂Tj
(Mi

j)
∣∣∣ (16.1)

≤ E(x,x′,∆E00)

[∣∣l(Mj, (x,x
′, ∆E00))− l(Mi

j, (x,x
′, ∆E00))

∣∣]+
∣∣∣ε̂Tj

(Mi
j)− ε̂Tj

(Mj)
∣∣∣+
∣∣∣ε̂T i

j
(Mi

j)− ε̂Tj
(Mi

j)
∣∣∣ (16.2)

≤ K
nj

+
∣∣∣ε̂Tj

(Mi
j)− ε̂Tj

(Mj)
∣∣∣+
∣∣∣ε̂T i

j
(Mi

j)− ε̂Tj
(Mi

j)
∣∣∣ (16.3)

≤ K
nj

+
1

nj

∑

(x,x′,∆E00)∈Tj

∣∣l(Mi
j, (x,x

′, ∆E00))− l(Mj, (x,x
′, ∆E00))

∣∣+

∣∣∣ε̂T i
j
(Mi

j)− ε̂Tj
(Mi

j)
∣∣∣

≤ K
nj

+
K
nj

+
∣∣∣ε̂T i

j
(Mi

j)− ε̂Tj
(Mi

j)
∣∣∣ (16.4)

=
2K
nj

+
1

nj

∣∣l(Mi
j, (ti, t

′
i, ∆E00))− l(Mi

j, (xi,x
′
i, ∆E00))

∣∣ (16.5)

≤ 2K
nj

+
1

nj
(σ |∆E00 (ti, t

′
i)−∆E00 (xi,x

′
i)|+m) (16.6)

≤ 2K + (∆maxσ +m)

nj
. (16.7)
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Inequalities (16.1) and (16.2) are due to the triangle inequality. (16.3) and (16.4) come from the uniform
stability (Lemma E). (16.5) comes from the fact that Tj and T ij only differ by their ith example. (16.6) comes
from the (σ,m)-admissibility of our loss (Lemma C). Noting that |∆E00 (ti, t

′
i)−∆E00 (xi,x

′
i)| ≤ ∆max

gives inequality (16.7).

Lemma 1 (Generalization bound) With probability 1 − δ, for any matrix Mj related to a region Cj ,
0 ≤ j ≤ K, learned with Algorithm 1, we have:

εP (Cj)(Mj)≤ ε̂Tj
(Mj) +

2D4
j

λjnj
+

(
4D4

j

λj
+∆max(

2D2
j√
λj

+2∆max)

)√
ln( 2δ )

2nj
.

Proof. Using the McDiarmid inequality (Theorem A) and Lemma G we can write:

Pr
[∣∣∣RTj

− ETj

[
RTj

]∣∣∣ ≥ ε
]
≤ 2 exp


− 2ε2

∑n
j=1

(
2K+(5σ+m)

nj

)2




≤ 2 exp

(
− 2ε2

1
nj

(2K + (5σ +m))
2

)
.

Then, by setting:

δ = 2 exp

(
− 2ε2

1
nj

(2K + (5σ +m))
2

)

we obtain:

ε = (2K + (∆maxσ +m))

√
ln
(
2
δ

)

2nj

and thus:

Pr
[∣∣∣RTj

− ETj

[
RTj

]∣∣∣ < ε
]
> 1− δ.

Then, with probability 1− δ:

RTj
< ETj

[
RTj

]
+ ε

⇔ εP (Cj)(Mj)− ε̂Tj
(Mj) < ETj

[
RTj

]
+ ε

⇔ εP (Cj)(Mj) < ε̂Tj
(Mj) +

K
nj

+ (2K + (∆maxσ +m))

√
ln
(
2
δ

)

2nj
.

The last equation is obtained by using Lemma F and replacing K, σ and m by their respective values gives
the lemma.

We showed that our approach is locally consistent. In the next section, we show that our algorithm
globally converges in O(1/

√
n).

2.2 Generalization bound for Algorithm 1

We consider the partitionC0, C1, . . . , CK over pairs of examples considered by Algorithm 1. We first recall
the concentration inequality that will help us to derive the bound.
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Proposition 1 ([3]). Let (n0, n1, . . . , nK) an IID multinomial random variable with parameters
n =

∑K
j=0 nj and (P (C0), P (C1), . . . , P (CK)). By the Breteganolle-Huber-Carol inequality we have:

Pr
{∑K

j=0

∣∣nj

n − P (Cj)
∣∣ ≥ η

}
≤ 2K exp

(
−nη2

2

)
, hence with probability at least 1− δ,

K∑

j=0

∣∣∣nj
n
− P (Cj)

∣∣∣ ≤
√

2K ln 2 + 2 ln(1/δ)

n
. (17)

We recall the true and empirical risks. Let M = {M0,M1, . . . ,MK} be the K+1 matrices learned
by our algorithm. The true error associated to M is defined as ε(M) =

∑K
j=0 εP (Cj)(Mj)P (Cj) where

εP (Cj)(Mj) is the local true risk for Cj . The empirical error over T of size n is defined as ε̂T (M) =
1
n

∑K
j=0 nj ε̂Tj

(Mj) where ε̂Tj
(Mj) is the empirical risk of Tj .

Before proving the main theorem of the paper we introduce an additional lemma showing a bound on
the loss function.

Lemma H Let M = {M0,M1, . . . ,MK} be any set of metrics learned by Algorithm 1 from a data
sample T of n pairs, for any 0 ≤ j ≤ K, we have that for any example (x,x′, ∆E00) ∼ P (Cj):

l(Mj, (x,x
′, ∆E00)) ≤ LB ,

with LB = max{∆max√
λ
, ∆2

max}.

Proof.

l(Mj, (x,x
′, ∆E00)) =

∣∣∣
(
x− x′)TMj(x− x′

)
−∆E00 (x,x

′)
2
∣∣∣

≤ max
{(

x− x′)TMj(x− x′
)
, ∆E00 (x,x

′)
2
}

(18.1)

≤ max

{
∆max√

λ
,∆E00 (x,x

′)
2
}

(18.2)

≤ max

{
∆max√

λ
,∆2

max

}
. (18.3)

Inequality (18.1) comes from the fact that any matrix Mj is positive semi definite and thus we are taking
the absolute difference of two positive values. Inequality (18.2) is obtained by using the Cauchy-Schwarz
inequality, the Lemma B with λ = min0≤j≤K λj and the inequality ‖x−x′‖ ≤ 1. Inequality (18.3) is due
to the definition of ∆max.

We can now prove the main theorem of the paper.

Theorem 1 Let C0, C1, . . . , CK be the regions considered and M = {M0,M1, . . . ,MK} any set of
metrics learned by Algorithm 1 from a data sample T of n pairs, we have with probability at least 1 − δ
that

ε(M) ≤ε̂T (M) + LB

√
2(K + 1) ln 2 + 2 ln(2/δ)

n
+

2(KD4 + 1)

λn

+

(
4(KD4 + 1)

λ
+∆max(

2(KD2 + 1)√
λ

+ 2(K + 1)∆max)

)√
ln( 4(K+1)

δ )

2n

where D = max1≤j≤K Dj , LB is the bound on the loss function and λ = min0≤j≤K λj is the minimum
regularization parameter among the K + 1 learning problems used in Algorithm 1.

Proof. Let nj be the number points of T that fall into the partition Cj . (n0, n1, . . . , nK) is a IID multino-
mial random variable with parameters n and (P (C0), P (C1), . . . , P (CK)).
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|ε(M)− ε̂T (M)| =
∣∣E(x,x′,∆E00)∼P [l(M, (x,x′, ∆E00))]− ε̂T (M)

∣∣

=

∣∣∣∣∣∣

K∑

j=0

E(x,x′,∆E00)∼P |(x,x′,∆E00)∈Cj

[
l(Mj, (x,x

′, ∆E00))
]
P (Cj)− ε̂T (M)

∣∣∣∣∣∣

=

∣∣∣∣∣∣

K∑

j=0

E(x,x′,∆E00)∼P |(x,x′,∆E00)∈Cj

[
l(Mj, (x,x

′, ∆E00))
]
P (Cj)

−
K∑

j=0

E(x,x′,∆E00)∼P |(x,x′,∆E00)∈Cj

[
l(Mj, (x,x

′, ∆E00))
] nj
n

+

K∑

j=0

E(x,x′,∆E00)∼P |(x,x′,∆E00)∈Cj

[
l(Mj, (x,x

′, ∆E00))
] nj
n
− ε̂T (M)

∣∣∣∣∣∣

≤

∣∣∣∣∣∣

K∑

j=0

E(x,x′,∆E00)∼P |(x,x′,∆E00)∈Cj

[
l(Mj, (x,x

′, ∆E00))
]
P (Cj)

−
K∑

j=0

E(x,x′,∆E00)∼P |(x,x′,∆E00)∈Cj

[
l(Mj, (x,x

′, ∆E00))
] nj
n

∣∣∣∣∣∣

+

∣∣∣∣∣∣

K∑

j=0

E(x,x′,∆E00)∼P |(x,x′,∆E00)∈Cj

[
l(Mj, (x,x

′, ∆E00))
] nj
n
− ε̂T (M)

∣∣∣∣∣∣
(19.1)

≤
K∑

j=0

E(x,x′,∆E00)∼P |(x,x′,∆E00)∈Cj

∣∣[l(Mj, (x,x
′, ∆E00))

]∣∣
∣∣∣P (Cj)−

nj
n

∣∣∣

+

∣∣∣∣∣∣

K∑

j=0

E(x,x′,∆E00)∼P |(x,x′,∆E00)∈Cj

[
l(Mj, (x,x

′, ∆E00))
] nj
n
−

K∑

j=0

nj
n
ε̂Tj

(Mj)

∣∣∣∣∣∣
(19.2)

≤
K∑

j=0

LB

∣∣∣P (Cj)−
nj
n

∣∣∣

+

∣∣∣∣∣∣

K∑

j=0

nj
n

(
E(x,x′,∆E00)∼P |(x,x′,∆E00)∈Cj

[
l(Mj, (x,x

′, ∆E00))
]
− ε̂Tj

(Mj)
)
∣∣∣∣∣∣

(19.3)

≤ LB
√

2(K + 1) ln 2 + 2 ln(2/δ)

n

+

K∑

j=0

nj
n

∣∣∣E(x,x′,∆E00)∼P |(x,x′,∆E00)∈Cj

[
l(Mj, (x,x

′, ∆E00))
]
− ε̂Tj

(Mj)
∣∣∣ (19.4)

≤ LB
√

2(K + 1) ln 2 + 2 ln(2/δ)

n

+
K∑

j=0

nj
n


 2D4

j

λjnj
+

(
2D4

j

λj
+∆max(

2D2
j√
λj

+ 2∆max)

)√
ln( 4(K+1)

δ )

2nj


 (19.5)

≤ LB
√

2(K + 1) ln 2 + 2 ln(2/δ)

n
+

2(KD4 + 1)

λn

+

(
2(KD4 + 1)

λ
+∆max(

2(KD2 + 1)√
λ

+ 2∆max)

)√
ln( 4(K+1)

δ )

2n
(19.6)
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Inequalities (19.1) and (19.2) are due to the triangle inequality. (19.3) comes from the application of
Lemma H. Inequality (19.4) is obtained by applying Proposition 1 with probability 1 − δ/2. (19.5) is
due to the application of Lemma 1 with probability 1 − δ/(2(K + 1)) for each of the (K + 1) learn-
ing problems. Inequality (19.6) is obtained by cancelling out the nj , noting that √nj ≤

√
n and taking

D = max1≤i≤nDj . Note that D0 = 1 corresponds to the partition used by the global metric.
Eventually by the union bound we obtained the final result with probability 1− δ.

3 Image Segmentation

In this section, we illustrate the application of the color mean-shift algorithm presented in our paper. We
apply color mean-shift on RGB components, on L∗u∗v∗ components and by using our learned distance
directly in the RGB components. The overall quantitative results for the Berkeley dataset are provided in
the paper and we propose to show some qualitative results on this dataset in Figure 1. As explained in the
paper, the number of segments in the resulting images is not a parameter of the algorithm, as a consequence
it is not easy to obtain images with the same number of segments for the three algorithms (RGB, L∗u∗v∗

and Metric learning). Thus, given an image, by playing with the color distance threshold, we have tried to
obtain the same segment numbers as the corresponding ground truth for the three algorithms. However, the
color mean-shift algorithm provides some very small segments, specially for the RGB and L∗u∗v∗ color
spaces. Consequently, for each test, in Figure 1, we have mentioned between brackets, first, the number of
segments, and second, the number of segments whose size is more than 150 pixels. For a fair comparison,
we use this last number as reference for each image, i.e. this number is almost constant and close to the
ground truth for each row.

It is worth mentioning that the ground truth segmentation has always very few segments. Thus, starting
from a large number of small segments, the used algorithm is grouping them by considering their color
differences. Consequently, the used color distance is crucial when we want to obtain small number of
segments as provided by the ground truth. We can see in Figure 1, that when working in the RGB or
L∗u∗v∗ color spaces, some segments that are perceptually different are merged while some other similar
segments are not. Most of the time, the color mean-shift is working well when using our distance. This
point was already checked quantitatively on the whole Berkeley dataset in the paper.
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Fig. 1. Illustration of segmentation provided by the color mean-shift algorithm applied in the RGB components (third
column), on L∗u∗v∗ components (fourth column) and by using our learned distance directly in the RGB components
(fifth column). First column represents the original image and the second one the ground truth.


