A Theoretical Analysis of Metric Hypothesis Transfer Learning

Michaël Perrot¹ and Amaury Habrard¹ {michael.perrot,amaury.habrard}@univ-st-etienne.fr

¹Université de Lyon, Université Jean Monnet de Saint-Etienne, Laboratoire Hubert Curien, CNRS, UMR5516, F-42000, Saint-Etienne, France.

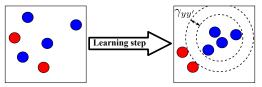
- 2 General Analysis
- 3 Specific Loss Analysis and Experiments
- 4 Conclusion

э

イロト イポト イヨト イヨト

Metric Learning

Learning how to compare objects : learn a new space where some constraints are fulfilled, e.g. move closer circles of the same color (class) and keep far away circles of different colors (classes).



Mahalanobis-like Distance

$$d_{\mathsf{M}}(\mathbf{x}, \mathbf{x}') = \sqrt{(\mathbf{x} - \mathbf{x}')^{\mathsf{T}} \mathsf{M}(\mathbf{x} - \mathbf{x}')}, \ \mathsf{M} \text{ a PSD matrix } (\mathsf{M} = \mathsf{LL}^{\mathsf{T}}).$$

Well-known distances

- Euclidean Distance : $\mathbf{M} = \mathbf{I}$
- Original Mahalanobis Distance : $\mathbf{M} = \mathbf{\Sigma}^{-1}$
- Zero Distance : **M** = **0**

Regularized Metric Learning

$$rgmin_{\mathbf{M}\succeq 0} \mathcal{L}_{\mathcal{T}}(\mathbf{M}) + \lambda \|\mathbf{M}\|_{\mathcal{F}}^2$$

with :

- $T = \{z_i = (\mathbf{x}_i, y_i)\}_{i=1}^n \subset (\mathcal{X} \times \mathcal{Y})^n$, a learning sample
- $L_T(\mathbf{M}) = \frac{1}{n^2} \sum_{\mathbf{z}, \mathbf{z}' \in T} I(\mathbf{M}, \mathbf{z}, \mathbf{z}')$ with $I(\mathbf{M}, \mathbf{z}, \mathbf{z}')$:
 - \blacktriangleright convex with respect to ${\bf M}$
 - (σ, m)-admissible
 - k-lipschitz
 - penalizing high distances between similar examples et small distances between dissimilar examples
- $\|\cdot\|_{\mathcal{F}}$, the Frobenius norm

・ 同 ト ・ ヨ ト ・ ヨ ト …

Regularized Metric Learning

$$\underset{\mathbf{M}\succeq \mathbf{0}}{\arg\min} L_{\mathcal{T}}(\mathbf{M}) + \lambda \|\mathbf{M} - \mathbf{0}\|_{\mathcal{F}}^{2}$$
(1)

with :

- $T = \{z_i = (\mathbf{x}_i, y_i)\}_{i=1}^n \subset (\mathcal{X} \times \mathcal{Y})^n$, a learning sample
- $L_T(\mathbf{M}) = \frac{1}{n^2} \sum_{\mathbf{z}, \mathbf{z}' \in T} I(\mathbf{M}, \mathbf{z}, \mathbf{z}')$ with $I(\mathbf{M}, \mathbf{z}, \mathbf{z}')$:
 - \blacktriangleright convex with respect to ${\bf M}$
 - (σ, m)-admissible
 - k-lipschitz
 - penalizing high distances between similar examples et small distances between dissimilar examples
- $\|\cdot\|_{\mathcal{F}}$, the Frobenius norm

・ 同 ト ・ ヨ ト ・ ヨ ト …

Biased Regularized Metric Learning

$$\underset{\mathbf{M}\succeq 0}{\arg\min L_{\mathcal{T}}(\mathbf{M})} + \lambda \|\mathbf{M} - \mathbf{M}_{\mathcal{S}}\|_{\mathcal{F}}^{2}$$

with :

- $T = \{z_i = (\mathbf{x}_i, y_i)\}_{i=1}^n \subset (\mathcal{X} \times \mathcal{Y})^n$, a learning sample
- $L_T(\mathbf{M}) = \frac{1}{n^2} \sum_{\mathbf{z}, \mathbf{z}' \in T} I(\mathbf{M}, \mathbf{z}, \mathbf{z}')$ with $I(\mathbf{M}, \mathbf{z}, \mathbf{z}')$:
 - \blacktriangleright convex with respect to ${\bf M}$
 - (σ, m)-admissible
 - k-lipschitz
 - penalizing high distances between similar examples et small distances between dissimilar examples
- $\|\cdot\|_{\mathcal{F}}$, the Frobenius norm
- $\bullet~M_{\mathcal{S}},$ a fixed metric biasing the regularization,
 - e.g. I, Σ^{-1} , a metric learned from another domain, . . .

く 白 ト く ヨ ト く ヨ ト

Biased Regularized Metric Learning

$$\underset{\mathsf{M}\succeq 0}{\arg\min L_{\mathcal{T}}(\mathsf{M})} + \lambda \|\mathsf{M} - \mathsf{M}_{\mathcal{S}}\|_{\mathcal{F}}^{2}$$

with :

- $T = \{z_i = (\mathbf{x}_i, y_i)\}_{i=1}^n \subset (\mathcal{X} \times \mathcal{Y})^n$, a learning sample
- $L_T(\mathbf{M}) = \frac{1}{n^2} \sum_{\mathbf{z}, \mathbf{z}' \in T} I(\mathbf{M}, \mathbf{z}, \mathbf{z}')$ with $I(\mathbf{M}, \mathbf{z}, \mathbf{z}')$:
 - \blacktriangleright convex with respect to ${\bf M}$
 - (σ, m)-admissible
 - k-lipschitz
 - penalizing high distances between similar examples et small distances between dissimilar examples
- $\|\cdot\|_{\mathcal{F}}$, the Frobenius norm
- $M_{\mathcal{S}}$, a fixed metric biasing the regularization,
 - e.g. $\boldsymbol{\mathsf{I}},\boldsymbol{\Sigma}^{-1},$ a metric learned from another domain, \ldots

Hypothesis Transfer Learning has already been studied in a different setting [Kuzborskij and Orabona, 2013, 2014].

M. Perrot and A. Habrard

Biased Regularized Metric Learning

$$\underset{\mathsf{M}\succeq 0}{\arg\min L_{\mathcal{T}}(\mathsf{M})} + \lambda \|\mathsf{M} - \mathsf{M}_{\mathcal{S}}\|_{\mathcal{F}}^{2}$$

with :

- $T = \{z_i = (\mathbf{x}_i, y_i)\}_{i=1}^n \subset (\mathcal{X} \times \mathcal{Y})^n$, a learning sample
- $L_T(\mathbf{M}) = \frac{1}{n^2} \sum_{\mathbf{z}, \mathbf{z}' \in T} I(\mathbf{M}, \mathbf{z}, \mathbf{z}')$ with $I(\mathbf{M}, \mathbf{z}, \mathbf{z}')$:
 - \blacktriangleright convex with respect to ${\bf M}$
 - (σ, m)-admissible
 - k-lipschitz
 - penalizing high distances between similar examples et small distances between dissimilar examples
- $\|\cdot\|_{\mathcal{F}}$, the Frobenius norm
- $M_{\mathcal{S}}$, a fixed metric biasing the regularization,
 - e.g. $I, \boldsymbol{\Sigma}^{-1},$ a metric learned from another domain, \ldots

Objective : Provide a theoretical analysis of biased regularized metric learning and propose an efficient way to reweight the source metric.

M. Perrot and A. Habrard

General Definitions

(σ, m) -admissibility

A loss function is (σ, m) -admissible for metric learning if the loss difference between two pairs of examples is bounded by a constant σ times a quantity only related to the labels plus a constant :

$$|l(\mathbf{M}, \mathbf{z}_1, \mathbf{z}_2) - l(\mathbf{M}, \mathbf{z}_3, \mathbf{z}_4)| \le \sigma |y_1y_2 - y_3y_4| + m.$$

k-lipschitz continuity

A loss function is k-lipschitz continuous if the loss difference between two metrics is bounded by a constant k times a quantity which only depends on the difference between the two metrics :

$$\left| l(\mathbf{M}, \mathbf{z}, \mathbf{z}') - l(\mathbf{M}', \mathbf{z}, \mathbf{z}') \right| \le k \|\mathbf{M} - \mathbf{M}'\|_{\mathcal{F}}.$$

Introduction

2 General Analysis

- On Average Analysis
- Uniform Stability Analysis

3 Specific Loss Analysis and Experiments

4 Conclusion

4 3 4 3 4 3 4

On Average Replace Two Stability

The expected loss difference when replacing two examples in the training set is bounded by a value decreasing in $\mathcal{O}\left(\frac{1}{n}\right)$.

Extension to metric learning of [Shalev-Shwartz et al., 2010].

Definition (On-average-replace-two-stability)

Let $\epsilon : \mathbb{N} \to \mathbb{R}$ be monotonically decreasing and let U(n) be the uniform distribution over $\{1 \dots n\}$. A metric learning algorithm is on-average-replace-two-stable with rate $\epsilon(n)$ if for every distribution $\mathcal{D}_{\mathcal{T}}$:

$$\mathbb{E}_{\substack{T \sim \mathcal{D}_{\mathcal{T}}^{n} \\ i, j \sim U(n) \\ \mathbf{z}_{1}, \mathbf{z}_{2} \sim \mathcal{D}_{\mathcal{T}}}} \left[l(\mathbf{M}^{jj^{*}}, \mathbf{z}^{i}, \mathbf{z}^{j}) - l(\mathbf{M}^{*}, \mathbf{z}^{i}, \mathbf{z}^{j}) \right] \leq \epsilon(n)$$

where \mathbf{M}^* , respectively \mathbf{M}^{ij^*} , is the optimal solution when learning with the training set T, respectively T^{ij} . T^{ij} is obtained by replacing \mathbf{z}^i , the *i*th example of T, by \mathbf{z}_1 to get a training set T^i and then by replacing \mathbf{z}^j , the *j*th example of T^i , by \mathbf{z}_2 .

On Average Bound

The learned metric is on average at least as good as the source metric.

Theorem (On-average-replace-two-stability)

Given a training sample T of size n drawn i.i.d. from $\mathcal{D}_{\mathcal{T}}$, an algorithm solving optimization problem (1) is on-average-replace-two-stable with $\epsilon(n) = \frac{8k^2}{\lambda n}$.

On Average Bound

The learned metric is on average at least as good as the source metric.

Theorem (On-average-replace-two-stability)

Given a training sample T of size n drawn i.i.d. from $\mathcal{D}_{\mathcal{T}}$, an algorithm solving optimization problem (1) is on-average-replace-two-stable with $\epsilon(n) = \frac{8k^2}{\lambda n}$.

Theorem (On average bound)

For any convex, k-lipschitz loss, we have :

$$\mathbb{E}_{T \sim \mathcal{D}_{\mathcal{T}}^{n}} \left[L_{\mathcal{D}_{\mathcal{T}}}(\mathbf{M}^{*}) \right] \leq L_{\mathcal{D}_{\mathcal{T}}}(\mathbf{M}_{\mathcal{S}}) + \frac{8k^{2}}{\lambda n}$$

where the expected value is taken over size-n training sets.

Uniform Stability

Changing an example in the training set does not change much the outcome of the algorithm.

Definition (Uniform stability [Bousquet and Elisseeff, 2002, Jin et al., 2009])

An algorithm has a uniform stability in $\epsilon(n)$ if $\forall i$,

$$\sup_{\mathbf{z},\mathbf{z}'\sim\mathcal{D}_{\mathcal{T}}}\left|I(\mathbf{M}^*,\mathbf{z},\mathbf{z}')-I(\mathbf{M}^{j^*},\mathbf{z},\mathbf{z}')\right|\leq\epsilon(n)$$

where \mathbf{M}^* is the matrix learned on the training set T and \mathbf{M}^{i^*} is the matrix learned on the training set T^i obtained by replacing the *i*th example of T by a new independent one.

Generalisation Bound

The biased regularized metric learning framework is consistent.

Theorem (Uniform stability)

Given a training sample T of n examples drawn i.i.d. from $\mathcal{D}_{\mathcal{T}}$, an algorithm solving optimization problem (1) has a uniform stability in $\epsilon(n) = \frac{4k^2}{\lambda n}$.

Generalisation Bound

The biased regularized metric learning framework is consistent.

Theorem (Uniform stability)

Given a training sample T of n examples drawn i.i.d. from $\mathcal{D}_{\mathcal{T}}$, an algorithm solving optimization problem (1) has a uniform stability in $\epsilon(n) = \frac{4k^2}{\lambda n}$.

Theorem (Generalization bound)

With probability $1 - \delta$, for any matrix \mathbf{M}^* learned with an $\epsilon(n)$ uniformly stable algorithm and for any convex, k-lipschitz and (σ, m) -admissible loss, we have :

$$L_{\mathcal{D}_{\mathcal{T}}}(\mathbf{M}^*) \leq L_{\mathcal{T}}(\mathbf{M}^*) + (4\sigma + 2m + c)\sqrt{\frac{\ln \frac{2}{\delta}}{2n}} + \mathcal{O}\left(\frac{1}{n}\right)$$

where c is a constant linked to the k-lipschitz property of the loss and $\epsilon(n)$ appears in $\mathcal{O}\left(\frac{1}{n}\right)$.

Introduction

- 2 General Analysis
- 3 Specific Loss Analysis and Experiments
 - 4 Conclusion

(4) (日本)

Application to a Specific Loss

We consider the following loss (inspired from [Jin et al., 2009]) :

$$I(\mathbf{M}, \mathbf{z}, \mathbf{z}') = \left[yy'((\mathbf{x} - \mathbf{x}')^T \mathbf{M}(\mathbf{x} - \mathbf{x}') - \gamma_{yy'}) \right]_+$$
(2)

where $[\cdot]_+$ is the hinge loss, yy' = 1 for examples of the same class and -1 otherwise and $\gamma_{yy'}$ is the chosen margin.

Lemma ((σ , m)-admissibility)

Let $\mathbf{z}_1, \mathbf{z}_2, \mathbf{z}_3, \mathbf{z}_4$ be four examples and \mathbf{M}^* be the optimal solution of Problem 1. The convex and k-lipschitz loss function $l(\mathbf{M}, \mathbf{z}, \mathbf{z}')$ is (σ, m) -admissible with $\sigma = \max(\gamma_{y_3y_4}, \gamma_{y_1y_2})$ and $m = 2 \max_{\mathbf{x}, \mathbf{x}'} \|\mathbf{x} - \mathbf{x}'\|^2 \left(\sqrt{\frac{L_T(\mathbf{M}_S)}{\lambda}} + \|\mathbf{M}_S\|_{\mathcal{F}}\right).$

Application to a Specific Loss

We consider the following loss (inspired from [Jin et al., 2009]) :

$$I(\mathbf{M}, \mathbf{z}, \mathbf{z}') = \left[yy'((\mathbf{x} - \mathbf{x}')^T \mathbf{M}(\mathbf{x} - \mathbf{x}') - \gamma_{yy'}) \right]_+$$
(2)

where $[\cdot]_+$ is the hinge loss, yy' = 1 for examples of the same class and -1 otherwise and $\gamma_{yy'}$ is the chosen margin.

Theorem (Generalization bound)

With probability $1 - \delta$ for any matrix \mathbf{M}^* learned by an algorithm solving optimization problem (1) with loss (2), we have :

$$L_{\mathcal{D}_{\mathcal{T}}}(\mathsf{M}^*) \leq L_{\mathcal{T}}(\mathsf{M}^*) + 4\left(\sqrt{\frac{L_{\mathcal{T}}(\mathsf{M}_{\mathcal{S}})}{\lambda}} + \|\mathsf{M}_{\mathcal{S}}\|_{\mathcal{F}} + c_{\gamma}\right)\sqrt{\frac{\ln\frac{2}{\delta}}{2n}} + \mathcal{O}\left(\frac{1}{n}\right)$$

where c_{γ} is a constant linked to the k-lipschitz property of the loss and the chosen margins.

< 回 > < 回 > < 回 >

Reweighting the Source Metric

Let $\mathbf{M}_{\mathcal{S}} = \beta \mathbf{M}_{\mathbf{SOURCE}}$, we want to minimize the right hand side of the bound, i.e. to choose the best matrix to transfer. Hence, we search β such that :

$$\beta^* = \arg\min_{\beta} \sqrt{\frac{L_{\tau}(\beta \mathsf{M}_{\mathsf{SOURCE}})}{\lambda}} + \|\beta \mathsf{M}_{\mathsf{SOURCE}}\|_{\mathcal{F}}$$
(3)

< 回 > < 三 > < 三 >

Reweighting the Source Metric

Let $\mathbf{M}_{\mathcal{S}} = \beta \mathbf{M}_{\mathbf{SOURCE}}$, we want to minimize the right hand side of the bound, i.e. to choose the best matrix to transfer. Hence, we search β such that :

$$\beta^* = \arg\min_{\beta} \sqrt{\frac{L_{\tau}(\beta \mathsf{M}_{\mathsf{SOURCE}})}{\lambda}} + \|\beta \mathsf{M}_{\mathsf{SOURCE}}\|_{\mathcal{F}}$$
(3)

Interest of Tuning β

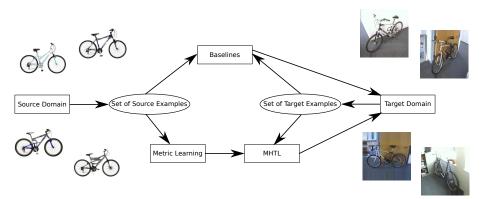
	Baselines		Solving optimization problem (1) with loss (2)				
Dataset	1-NN	ITML	$M_S = \beta I$	$M_{\mathcal{S}} = I$	$\mathbf{M}_{\mathcal{S}} = \beta \mathbf{\Sigma}^{-1}$	$M_\mathcal{S} = \mathbf{\Sigma}^{-1}$	
Breast	95.31 ± 1.11	95.40 ± 1.37	$\textbf{96.06} \pm \textbf{0.77}$	95.75 ± 0.87	95.71 ± 0.84	94.76 ± 1.38	
Pima	67.92 ± 1.95	68.13 ± 1.86	67.87 ± 1.57	67.54 ± 1.99	$\textbf{68.37} \pm \textbf{2.00}$	66.31 ± 2.37	
Scale	78.73 ± 1.69	$\textbf{87.31} \pm \textbf{2.35}$	80.98 ± 1.51	80.82 ± 1.27	81.35 ± 1.17	80.88 ± 1.43	
Wine	93.40 ± 2.70	93.82 ± 2.63	$\textbf{95.42} \pm \textbf{1.71}$	95.07 ± 1.68	94.31 ± 2.01	80.56 ± 5.75	

(4) (日本)

Application to a Transfer Learning Task

Setting

The idea is to learn a metric on a source domain and to use this metric to bias the regularizer when learning on the target domain.



MHTL : Metric Hypothesis Transfer Learning

M. Perrot and A. Habrard

Metric Hypothesis Transfer Learning

< □ > < □ > < □ > < □ > < □ > < □ >

Application to a Transfer Learning Task

Setting

The idea is to learn a metric on a source domain and to use this metric to bias the regularizer when learning on the target domain.

On the Office-Caltech dataset

	Baselines			Solving optimization problem (1) with loss (2)		
Task	1-NN _S	MMDT	GFK	$\mathbf{M}_{\mathcal{S}} = \beta \mathbf{\Sigma}^{-1}$	$\mathbf{M}_{S} = \beta \mathbf{M}_{ITML}$	$\mathbf{M}_{\mathcal{S}} = \beta \mathbf{M}_{LMNN}$
$A\toC$	35.95 ± 1.30	$\textbf{39.76} \pm \textbf{2.25}$	37.81 ± 1.85	32.65 ± 3.76	32.93 ± 4.60	34.66 ± 3.66
$A\toD$	33.58 ± 4.37	54.25 ± 4.32	51.54 ± 3.55	54.69 ± 3.96	51.54 ± 4.03	$\textbf{54.72} \pm \textbf{5.00}$
$A\toW$	33.68 ± 3.60	64.91 ± 5.71	59.36 ± 4.30	67.11 ± 5.11	64.09 ± 5.20	$\textbf{67.62} \pm \textbf{5.18}$
$C \to A$	37.37 ± 2.95	$\textbf{51.05} \pm \textbf{3.38}$	46.36 ± 2.94	50.15 ± 4.87	49.89 ± 5.25	50.36 ± 4.67
$C \rightarrow D$	31.89 ± 5.77	52.80 ± 4.84	$\textbf{58.07} \pm \textbf{3.90}$	56.77 ± 4.63	53.78 ± 7.23	57.44 ± 4.48
$C\toW$	28.60 ± 6.13	62.75 ± 5.19	63.26 ± 5.89	64.64 ± 6.44	64.00 ± 6.08	$\textbf{65.11} \pm \textbf{5.25}$
$D \to A$	33.59 ± 1.77	$\textbf{50.39} \pm \textbf{3.40}$	40.77 ± 2.55	49.48 ± 4.41	49.11 ± 4.09	49.67 ± 4.00
$D \to C$	31.16 ± 1.19	$\textbf{35.70} \pm \textbf{3.25}$	30.64 ± 1.98	32.90 ± 3.14	32.99 ± 3.58	33.84 ± 2.99
$D\toW$	$\textbf{76.92} \pm \textbf{2.18}$	74.43 ± 3.10	74.98 ± 2.89	65.57 ± 4.52	66.38 ± 6.04	69.72 ± 3.78
$W\toA$	32.19 ± 3.04	50.56 ± 3.66	43.26 ± 2.34	50.80 ± 3.63	50.16 ± 4.32	$\textbf{50.92} \pm \textbf{4.00}$
$W\toC$	27.67 ± 2.58	$\textbf{34.86} \pm \textbf{3.62}$	29.95 ± 3.05	31.54 ± 3.60	31.40 ± 4.29	32.64 ± 3.52
$W\toD$	64.61 ± 4.30	62.52 ± 4.40	$\textbf{71.93} \pm \textbf{4.07}$	57.17 ± 6.50	56.85 ± 5.51	61.14 ± 5.78
Mean	38.93 ± 3.26	$\textbf{52.83} \pm \textbf{3.93}$	50.66 ± 3.28	51.12 ± 4.55	50.26 ± 5.02	52.32 ± 4.36

MHTL, using only the source metric, is competitive with the baselines

Introduction

- 2 General Analysis
- Specific Loss Analysis and Experiments
- 4 Conclusion

э

イロト イポト イヨト イヨト

Conclusion and Perspectives

We proposed a study of Biased Regularized Metric Learning through :

- An On Average analysis showing that with a fast convergence rate the learned metric is better than the source metric.
- A Consistency Analysis proving that biasing the regularization term toward a source metric does not challenge the consistency of the approach.
- A Reweighting Algorithm allowing us to weight the source metric with respect to the problem at hand when we consider a specific loss.

Conclusion and Perspectives

We proposed a study of Biased Regularized Metric Learning through :

- An On Average analysis showing that with a fast convergence rate the learned metric is better than the source metric.
- A Consistency Analysis proving that biasing the regularization term toward a source metric does not challenge the consistency of the approach.
- A Reweighting Algorithm allowing us to weight the source metric with respect to the problem at hand when we consider a specific loss.

A perspective of this work would be to extend the framework to other settings and other kind of regularizers.

< 回 > < 回 > < 回 >

References I

Bellet, A., Habrard, A., and Sebban, M. (2015).
 Metric Learning.
 Morgan & Claypool Publishers.

- Bousquet, O. and Elisseeff, A. (2002).
 Stability and generalization.
 Journal of Machine Learning Research, 2 :499–526.
- Jin, R., Wang, S., and Zhou, Y. (2009).
 Regularized distance metric learning : Theory and algorithm.
 In *Proc. of NIPS*, pages 862–870.
- Kuzborskij, I. and Orabona, F. (2013). Stability and hypothesis transfer learning.

In Proc. of the 30th International Conference on Machine Learning, ICML 2013, Atlanta, GA, USA, 16-21 June 2013, pages 942–950.

< 回 > < 回 > < 回 >

References II

Kuzborskij, I. and Orabona, F. (2014). Learning by transferring from auxiliary hypotheses. *CoRR*, abs/1412.1619.

- Shalev-Shwartz, S. and Ben-David, S. (2014).
 Understanding Machine Learning : From Theory to Algorithms.
 Cambridge University Press.
- Shalev-Shwartz, S., Shamir, O., Srebro, N., and Sridharan, K. (2010). Learnability, stability and uniform convergence. Journal of Machine Learning Research, 11 :2635–2670.

< 回 > < 三 > < 三 >