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Metric Learning

Learning how to compare objects : learn a new space where some constraints
are fulfilled, e.g. move closer circles of the same color (class) and keep far
away circles of different colors (classes).

Learning step

Mahalanobis-like Distance

dM(x, x′) =
√

(x− x′)TM(x− x′), M a PSD matrix (M = LLT ).

Well-known distances

Euclidean Distance : M = I

Original Mahalanobis Distance : M = Σ−1

Zero Distance : M = 0
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Regularized Metric Learning

arg min
M�0

LT (M) + λ‖M‖2
F (1)

with :

T = {zi = (xi , yi )}ni=1 ⊂ (X × Y)n, a learning sample
LT (M) = 1

n2

∑
z,z′∈T l(M, z, z′)

with l(M, z, z′) :
I convex with respect to M
I (σ,m)-admissible
I k-lipschitz

I penalizing high distances between similar examples et small distances
between dissimilar examples

‖ · ‖F , the Frobenius norm

MS , a fixed metric biasing the regularization,
e.g. I,Σ−1, a metric learned from another domain, . . .

Objective : Provide a theoretical analysis of biased regularized metric
learning and propose an efficient way to reweight the source metric.
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Biased Regularized Metric Learning
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Hypothesis Transfer Learning has already been studied in a different
setting [Kuzborskij and Orabona, 2013, 2014].
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General Definitions

(σ,m)-admissibility

A loss function is (σ,m)-admissible for metric learning if the loss difference
between two pairs of examples is bounded by a constant σ times a
quantity only related to the labels plus a constant :

|l(M, z1, z2)− l(M, z3, z4)| ≤ σ |y1y2 − y3y4|+ m.

k-lipschitz continuity

A loss function is k-lipschitz continuous if the loss difference between two
metrics is bounded by a constant k times a quantity which only depends
on the difference between the two metrics :∣∣l(M, z, z′)− l(M′, z, z′)

∣∣ ≤ k‖M−M′‖F .
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On Average Replace Two Stability

The expected loss difference when replacing two examples in the training
set is bounded by a value decreasing in O

(
1
n

)
.

Extension to metric learning of [Shalev-Shwartz et al., 2010].

Definition (On-average-replace-two-stability)

Let ε : N→ R be monotonically decreasing and let U(n) be the uniform
distribution over {1 . . . n}. A metric learning algorithm is
on-average-replace-two-stable with rate ε(n) if for every distribution DT :

E T∼DT
n

i ,j∼U(n)
z1,z2∼DT

[
l(Mi j

∗
, zi , zj)− l(M∗, zi , zj)

]
≤ ε(n)

where M∗, respectively Mi j
∗
, is the optimal solution when learning with

the training set T , respectively T i j . T i j is obtained by replacing zi , the i th

example of T , by z1 to get a training set T i and then by replacing zj , the
j th example of T i , by z2.
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On Average Bound

The learned metric is on average at least as good as the source metric.

Theorem (On-average-replace-two-stability)

Given a training sample T of size n drawn i.i.d. from DT , an algorithm
solving optimization problem (1) is on-average-replace-two-stable with

ε(n) = 8k2

λn .

Theorem (On average bound)

For any convex, k-lipschitz loss, we have :

ET∼DT
n [LDT (M∗)] ≤ LDT (MS) +

8k2

λn

where the expected value is taken over size-n training sets.
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Uniform Stability

Changing an example in the training set does not change much the
outcome of the algorithm.

Definition (Uniform stability [Bousquet and Elisseeff, 2002, Jin et al., 2009])

An algorithm has a uniform stability in ε(n) if ∀i ,

sup
z,z′∼DT

∣∣∣l(M∗, z, z′)− l(Mi ∗, z, z′)
∣∣∣ ≤ ε(n)

where M∗ is the matrix learned on the training set T and Mi ∗ is the
matrix learned on the training set T i obtained by replacing the i th example
of T by a new independent one.
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Generalisation Bound

The biased regularized metric learning framework is consistent.

Theorem (Uniform stability)

Given a training sample T of n examples drawn i.i.d. from DT , an
algorithm solving optimization problem (1) has a uniform stability in

ε(n) = 4k2

λn .

Theorem (Generalization bound)

With probability 1− δ, for any matrix M∗ learned with an ε(n) uniformly
stable algorithm and for any convex, k-lipschitz and (σ,m)-admissible loss,
we have :

LDT (M∗) ≤ LT (M∗) + (4σ + 2m + c)

√
ln 2

δ

2n
+O

(
1

n

)
where c is a constant linked to the k-lipschitz property of the loss and ε(n)
appears in O

(
1
n

)
.
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Application to a Specific Loss
We consider the following loss (inspired from [Jin et al., 2009]) :

l(M, z, z′) =
[
yy ′((x− x′)TM(x− x′)− γyy ′)

]
+

(2)

where [·]+ is the hinge loss, yy ′ = 1 for examples of the same class and −1
otherwise and γyy ′ is the chosen margin.

Lemma ((σ,m)-admissibility)

Let z1, z2, z3, z4 be four examples and M∗ be the optimal solution of
Problem 1. The convex and k-lipschitz loss function l(M, z, z′) is
(σ,m)-admissible with σ = max(γy3y4 , γy1y2) and

m = 2 maxx,x′ ‖x− x′‖2 (
√

LT (MS)
λ + ‖MS‖F ).
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Reweighting the Source Metric

Let MS = βMSOURCE, we want to minimize the right hand side of the
bound, i.e. to choose the best matrix to transfer. Hence, we search β such
that :

β∗ = arg min
β

√
LT (βMSOURCE)

λ
+ ‖βMSOURCE‖F (3)

Interest of Tuning β

Baselines Solving optimization problem (1) with loss (2)

Dataset 1-NN ITML MS = βI MS = I MS = βΣ−1 MS = Σ−1

Breast 95.31 ± 1.11 95.40 ± 1.37 96.06 ± 0.77 95.75 ± 0.87 95.71 ± 0.84 94.76 ± 1.38

Pima 67.92 ± 1.95 68.13 ± 1.86 67.87 ± 1.57 67.54 ± 1.99 68.37 ± 2.00 66.31 ± 2.37

Scale 78.73 ± 1.69 87.31 ± 2.35 80.98 ± 1.51 80.82 ± 1.27 81.35 ± 1.17 80.88 ± 1.43

Wine 93.40 ± 2.70 93.82 ± 2.63 95.42 ± 1.71 95.07 ± 1.68 94.31 ± 2.01 80.56 ± 5.75

M. Perrot and A. Habrard Metric Hypothesis Transfer Learning 13 / 16



Reweighting the Source Metric

Let MS = βMSOURCE, we want to minimize the right hand side of the
bound, i.e. to choose the best matrix to transfer. Hence, we search β such
that :

β∗ = arg min
β

√
LT (βMSOURCE)

λ
+ ‖βMSOURCE‖F (3)

Interest of Tuning β

Baselines Solving optimization problem (1) with loss (2)

Dataset 1-NN ITML MS = βI MS = I MS = βΣ−1 MS = Σ−1

Breast 95.31 ± 1.11 95.40 ± 1.37 96.06 ± 0.77 95.75 ± 0.87 95.71 ± 0.84 94.76 ± 1.38

Pima 67.92 ± 1.95 68.13 ± 1.86 67.87 ± 1.57 67.54 ± 1.99 68.37 ± 2.00 66.31 ± 2.37

Scale 78.73 ± 1.69 87.31 ± 2.35 80.98 ± 1.51 80.82 ± 1.27 81.35 ± 1.17 80.88 ± 1.43

Wine 93.40 ± 2.70 93.82 ± 2.63 95.42 ± 1.71 95.07 ± 1.68 94.31 ± 2.01 80.56 ± 5.75

M. Perrot and A. Habrard Metric Hypothesis Transfer Learning 13 / 16



Application to a Transfer Learning Task

Setting

The idea is to learn a metric on a source domain and to use this metric to
bias the regularizer when learning on the target domain.

Baselines

Source Domain Set of Source Examples Set of Target Examples Target Domain

Metric Learning MHTL

MHTL : Metric Hypothesis Transfer Learning
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Application to a Transfer Learning Task

Setting

The idea is to learn a metric on a source domain and to use this metric to
bias the regularizer when learning on the target domain.

On the Office-Caltech dataset
Baselines Solving optimization problem (1) with loss (2)

Task 1-NNS MMDT GFK MS = βΣ−1 MS = βMITML MS = βMLMNN

A → C 35.95 ± 1.30 39.76 ± 2.25 37.81 ± 1.85 32.65 ± 3.76 32.93 ± 4.60 34.66 ± 3.66

A → D 33.58 ± 4.37 54.25 ± 4.32 51.54 ± 3.55 54.69 ± 3.96 51.54 ± 4.03 54.72 ± 5.00
A → W 33.68 ± 3.60 64.91 ± 5.71 59.36 ± 4.30 67.11 ± 5.11 64.09 ± 5.20 67.62 ± 5.18
C → A 37.37 ± 2.95 51.05 ± 3.38 46.36 ± 2.94 50.15 ± 4.87 49.89 ± 5.25 50.36 ± 4.67

C → D 31.89 ± 5.77 52.80 ± 4.84 58.07 ± 3.90 56.77 ± 4.63 53.78 ± 7.23 57.44 ± 4.48

C → W 28.60 ± 6.13 62.75 ± 5.19 63.26 ± 5.89 64.64 ± 6.44 64.00 ± 6.08 65.11 ± 5.25
D → A 33.59 ± 1.77 50.39 ± 3.40 40.77 ± 2.55 49.48 ± 4.41 49.11 ± 4.09 49.67 ± 4.00

D → C 31.16 ± 1.19 35.70 ± 3.25 30.64 ± 1.98 32.90 ± 3.14 32.99 ± 3.58 33.84 ± 2.99

D → W 76.92 ± 2.18 74.43 ± 3.10 74.98 ± 2.89 65.57 ± 4.52 66.38 ± 6.04 69.72 ± 3.78

W → A 32.19 ± 3.04 50.56 ± 3.66 43.26 ± 2.34 50.80 ± 3.63 50.16 ± 4.32 50.92 ± 4.00
W → C 27.67 ± 2.58 34.86 ± 3.62 29.95 ± 3.05 31.54 ± 3.60 31.40 ± 4.29 32.64 ± 3.52

W → D 64.61 ± 4.30 62.52 ± 4.40 71.93 ± 4.07 57.17 ± 6.50 56.85 ± 5.51 61.14 ± 5.78

Mean 38.93 ± 3.26 52.83 ± 3.93 50.66 ± 3.28 51.12 ± 4.55 50.26 ± 5.02 52.32 ± 4.36

MHTL, using only the source metric, is competitive with the baselines.
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Conclusion and Perspectives

We proposed a study of Biased Regularized Metric Learning through :

An On Average analysis showing that with a fast convergence rate the
learned metric is better than the source metric.

A Consistency Analysis proving that biasing the regularization term
toward a source metric does not challenge the consistency of the
approach.

A Reweighting Algorithm allowing us to weight the source metric with
respect to the problem at hand when we consider a specific loss.

A perspective of this work would be to extend the framework to other
settings and other kind of regularizers.
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