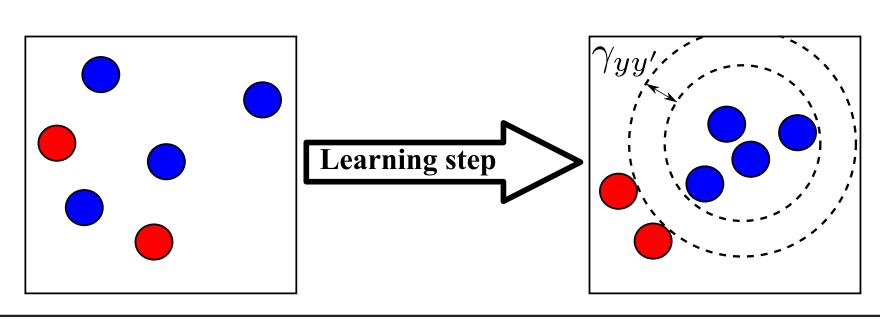
A Theoretical Analysis of Metric Hypothesis Transfer Learning

Université Jean Monnet de Saint-Etienne, Université de Lyon, Laboratoire Hubert Curien, CNRS, UMR5516, F-42000, Saint-Etienne, France. {michael.perrot,amaury.habrard}@univ-st-etienne.fr

METRIC LEARNING

Learning how to compare objects: learn a new space where some constraints are fulfilled, e.g. move closer circles of the same color (class) and keep far away circles of different colors (classes).



Mahalanobis-like Distance:

 $d_{\mathbf{M}}(\mathbf{x}, \mathbf{x}') = \sqrt{(\mathbf{x} - \mathbf{x}')^T \mathbf{M}(\mathbf{x} - \mathbf{x}')}, \mathbf{M} \text{ a PSD matrix.}$

Link with some well-known distances:

- Euclidean Distance: $\mathbf{M} = \mathbf{I}$
- Original Mahalanobis Distance: $\mathbf{M} = \boldsymbol{\Sigma}^{-1}$
- Zero Distance: $\mathbf{M} = \mathbf{0}$

BIASED REGULARIZED METRIC LEARNING

Let $\|\cdot\|_{\mathcal{F}}$ be the Frobenius norm, $\mathbf{M}_{\mathcal{S}}$ is a fixed metric biasing the regularization, we consider the following optimization problem w.r.t. a learning sample $T = \{z_i = (\mathbf{x}_i, y_i)\}_{i=1}^n \subset (\mathcal{X} \times \mathcal{Y})^n$:

$$\arg\min L_T(\mathbf{M}) + \lambda \|\mathbf{M} - \mathbf{M}_{\mathcal{S}}\|_{\mathcal{F}}^2$$

where $L_T(\mathbf{M}) = \sum_{\mathbf{z}, \mathbf{z}' \in T} l(\mathbf{M}, \mathbf{z}, \mathbf{z}')$ stands for the empirical risk with $l(\mathbf{M}, \mathbf{z}, \mathbf{z}')$ a convex, (σ, m) -admissible and k-lipschitz loss. (σ, m) -admissibility: $|l(\mathbf{M}, \mathbf{z}_1, \mathbf{z}_2) - l(\mathbf{M}, \mathbf{z}_3, \mathbf{z}_4)| \le \sigma |y_1y_2 - y_3y_4| + m$ k-lipschitz continuity: $|l(\mathbf{M}, \mathbf{z}, \mathbf{z}') - l(\mathbf{M}', \mathbf{z}, \mathbf{z}')| \leq k ||\mathbf{M} - \mathbf{M}'||_{\mathcal{F}}$

We use the following loss in the experiments:

$$l(\mathbf{M}, \mathbf{z}, \mathbf{z}') = \left[yy'((\mathbf{x} - \mathbf{x}')^T \mathbf{M}(\mathbf{x} - \mathbf{x}') - \gamma_{yy'}) \right]$$

where $[\cdot]_+$ is the hinge loss, yy' = 1 for examples of the same class and -1 otherwise and $\gamma_{yy'}$ is the chosen margin.

REFERENCES

[BHS15] Aurélien Bellet, Amaury Habrard, and Marc Sebban. Metr	ric Lea
gan & Claypool Publishers, 2015.	
[JWZ09] Rong Jin, Shijun Wang, and Yang Zhou. Regularized distant Theory and algorithm. In <i>Proc. of NIPS</i> , pages 862–870, 2	
[SSBD14] Shai Shalev-Shwartz and Shai Ben-David. Understanding N From Theory to Algorithms. Cambridge University Press,	

Michaël Perrot and Amaury Habrard

Objectives: Provide a theoretical analysis of biased regularized metric learning and propose an efficient way to reweight the source metric.

(2)

ic Learning. Mor-

ce metric learning: 009. *Iachine Learning:*

ON AVERAGE ANALYSIS: THE LEARNED METRIC IS BETTER THAN THE SOURCE ONE

Definition 1 (On-average-replace-two-stability). Let $\epsilon : \mathbb{N} \to \mathbb{R}$ be monotonically decreasing and let U(n) be the uniform distribution over $\{1...n\}$. A metric learning algorithm is on-average-replace-two-stable with rate $\epsilon(n)$ if for every distribution $\mathcal{D}_{\mathcal{T}}$:

 $\mathbb{E}_{\substack{T \sim \mathcal{D}_{\mathcal{T}}^{n} \\ i, j \sim U(n)}} \left[l(\mathbf{M}^{i^{j^{*}}}, \mathbf{z}^{i}, \mathbf{z}^{j}) - l(\mathbf{M}^{*}, \mathbf{z}^{i}, \mathbf{z}^{j}) \right] \leq \epsilon(n)$

where \mathbf{M}^* , respectively $\mathbf{M}^{i^{j^*}}$, is the optimal solution when learning with the training set T, respectively T^{ij} . T^{ij} is obtained by replacing \mathbf{z}^i , the i^{th} example of T, by \mathbf{z}_1 to get a training set T^i and then by replacing \mathbf{z}^{j} , the j^{th} example of T^{i} , by \mathbf{z}_{2} .

UNIFORM STABILITY ANALYSIS: AN ALGORITHM SOLVING PROBLEM (1) IS CONSISTENT **Theorem 3** (Uniform stability). Given a training sample T of n examples drawn i.i.d. from **Definition 2** (Uniform stability [JWZ09]). An al- $\mathcal{D}_{\mathcal{T}}$, an algorithm solving optimization problem (1) has a uniform stability in $\epsilon(n) = \frac{4k^2}{\lambda n}$. gorithm has a uniform stability in $\epsilon(n)$ if $\forall i$, $\epsilon(n)$ **Theorem 4** (Generalization bound). With probability $1 - \delta$, for any matrix \mathbf{M}^* learned with an $\epsilon(n)$ uniformly stable algorithm and for any convex, k-lipschitz and (σ, m) -admissible loss, we have: where \mathbf{M}^* is the matrix learned on the training set T and \mathbf{M}^{i^*} is the matrix learned on the training set $L_{\mathcal{D}_{\mathcal{T}}}(\mathbf{M}^*) \leq L_T(\mathbf{M}^*) + (4\sigma + 2m)$

$$\sup_{\mathbf{z},\mathbf{z}'\sim\mathcal{D}_{\mathcal{T}}}\left|l(\mathbf{M}^{*},\mathbf{z},\mathbf{z}')-l(\mathbf{M}^{i^{*}},\mathbf{z},\mathbf{z}')\right|\leq\epsilon$$

 T^{i} obtained by replacing the i^{th} example of T by a new independent one.

Specific Loss Analysis

Theorem 5 (Generalization bound). With probability $1 - \delta$ for any matrix \mathbf{M}^* learned by an algorithm solving optimization problem (1) with loss (2), we have:

$$L_{\mathcal{D}_{\mathcal{T}}}(\mathbf{M}^{*}) \leq L_{T}(\mathbf{M}^{*}) + 4\left(\sqrt{\frac{L_{T}(\mathbf{M}_{\mathcal{S}})}{\lambda}} + \|\mathbf{M}_{\mathcal{S}}\|_{\mathcal{F}} + c_{\gamma}\right)\sqrt{\frac{\ln\frac{2}{\delta}}{2n}} + \mathcal{O}\left(\frac{1}{n}\right)$$

where c_{γ} is a constant linked to the k-lipschitz property of the loss and the chosen margins.

Optimizing the influence of the source by reweighting Let $C(\mathbf{M}_{\mathcal{S}}) = \sqrt{\frac{L_T(\mathbf{M}_{\mathcal{S}})}{\lambda}} + \|\mathbf{M}_{\mathcal{S}}\|_{\mathcal{F}}$, let $\mathbf{M}_{\mathcal{S}} = \beta \mathbf{M}_{\mathbf{SOURCE}}$ we search β such that:

> $\beta^* = \arg\min C(\beta \mathbf{M}_{\mathbf{SOURCE}})$ (3)

The goal is to minimize the right hand side of the bound, i.e. to choose the best matrix to transfer.

Theorem 1 (On-average-replace-two-stability). Given a training sample T of size n drawn i.i.d. from $\mathcal{D}_{\mathcal{T}}$, an algorithm solving optimization problem (1) is on-average-replace-two-stable with $\epsilon(n) = \frac{8k^2}{\lambda n}$.

Theorem 2 (On average bound). For any convex, k-lipschitz loss, we have:

 $\mathbb{E}_{T \sim \mathcal{D}_{\mathcal{T}}^{n}} \left[L_{\mathcal{D}_{\mathcal{T}}}(\mathbf{M}^{*}) \right] \leq L_{\mathcal{D}_{\mathcal{T}}}(\mathbf{M}_{\mathcal{S}}) + \frac{8k^{2}}{\lambda n}$

where the expected value is taken over size-n training sets.

where c is a constant linked to the k-lipschitz property of the loss and $\epsilon(n)$ appears in $\mathcal{O}\left(\frac{1}{n}\right)$.

EXPERIMENTS

Interest of **optimizing** β (UCI datasets):

	Bas	elines	Solving optimization problem (1) with loss (2)				
Dataset	1-NN	ITML	$\mathbf{M}_{\mathcal{S}} = \beta \mathbf{I}$	$\mathbf{M}_{\mathcal{S}} = \mathbf{I}$	$\mathbf{M}_{\mathcal{S}} = eta \mathbf{\Sigma}^{-1}$	$\mathrm{M}_{\mathcal{S}} = \Sigma^{-1}$	
Breast	95.31 ± 1.11	95.40 ± 1.37	$\textbf{96.06}\pm\textbf{0.77}$	95.75 ± 0.87	95.71 ± 0.84	94.76 ± 1.38	
Pima	67.92 ± 1.95	68.13 ± 1.86	67.87 ± 1.57	67.54 ± 1.99	$\textbf{68.37} \pm \textbf{2.00}$	66.31 ± 2.37	
Scale	78.73 ± 1.69	$\textbf{87.31} \pm \textbf{2.35}$	80.98 ± 1.51	80.82 ± 1.27	81.35 ± 1.17	80.88 ± 1.43	
Wine	93.40 ± 2.70	93.82 ± 2.63	$\textbf{95.42} \pm \textbf{1.71}$	95.07 ± 1.68	94.31 ± 2.01	80.56 ± 5.75	

Application to a **transfer learning task** (Office-Caltech dataset):

			0	X			
	Baseline	s (using source ex	xamples)	Solving optimization problem (1) with loss (2)			
		o (using bource of	(ampies)	(using the source metric but no source examples)			
Task	$1\text{-}\mathrm{NN}_{\mathcal{S}}$	MMDT	GFK	$\mathbf{M}_{\mathcal{S}} = \beta \mathbf{\Sigma}^{-1}$	$\mathbf{M}_{\mathcal{S}} = \beta \mathbf{M}_{\mathbf{ITML}}$	$\mathbf{M}_{\mathcal{S}} = \beta \mathbf{M}_{\mathbf{LMNN}}$	
$A \to C$	35.95 ± 1.30	$\textbf{39.76} \pm \textbf{2.25}$	37.81 ± 1.85	32.65 ± 3.76	32.93 ± 4.60	34.66 ± 3.66	
$A \rightarrow D$	33.58 ± 4.37	54.25 ± 4.32	51.54 ± 3.55	54.69 ± 3.96	51.54 ± 4.03	54.72 ± 5.00	
$A \rightarrow W$	33.68 ± 3.60	64.91 ± 5.71	59.36 ± 4.30	67.11 ± 5.11	64.09 ± 5.20	$\textbf{67.62} \pm \textbf{5.18}$	
$C \rightarrow A$	37.37 ± 2.95	$\textbf{51.05} \pm \textbf{3.38}$	46.36 ± 2.94	50.15 ± 4.87	49.89 ± 5.25	50.36 ± 4.67	
$C \rightarrow D$	31.89 ± 5.77	52.80 ± 4.84	58.07 ± 3.90	56.77 ± 4.63	53.78 ± 7.23	57.44 ± 4.48	
$C \rightarrow W$	28.60 ± 6.13	62.75 ± 5.19	63.26 ± 5.89	64.64 ± 6.44	64.00 ± 6.08	$\textbf{65.11} \pm \textbf{5.25}$	
$D \rightarrow A$	33.59 ± 1.77	$\textbf{50.39} \pm \textbf{3.40}$	40.77 ± 2.55	49.48 ± 4.41	49.11 ± 4.09	49.67 ± 4.00	
$D \rightarrow C$	31.16 ± 1.19	$\textbf{35.70} \pm \textbf{3.25}$	30.64 ± 1.98	32.90 ± 3.14	32.99 ± 3.58	33.84 ± 2.99	
$D \rightarrow W$	$\textbf{76.92} \pm \textbf{2.18}$	74.43 ± 3.10	74.98 ± 2.89	65.57 ± 4.52	66.38 ± 6.04	69.72 ± 3.78	
$W \to A$	32.19 ± 3.04	50.56 ± 3.66	43.26 ± 2.34	50.80 ± 3.63	50.16 ± 4.32	$\textbf{50.92} \pm \textbf{4.00}$	
$W \rightarrow C$	27.67 ± 2.58	$\textbf{34.86} \pm \textbf{3.62}$	29.95 ± 3.05	31.54 ± 3.60	31.40 ± 4.29	32.64 ± 3.52	
$W \rightarrow D$	64.61 ± 4.30	62.52 ± 4.40	$\textbf{71.93} \pm \textbf{4.07}$	57.17 ± 6.50	56.85 ± 5.51	61.14 ± 5.78	
Mean	38.93 ± 3.26	$\textbf{52.83} \pm \textbf{3.93}$	50.66 ± 3.28	51.12 ± 4.55	50.26 ± 5.02	52.32 ± 4.36	

$$(n+c)\sqrt{\frac{\ln\frac{2}{\delta}}{2n}} + \mathcal{O}\left(\frac{1}{n}\right)$$