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Objectives: Provide a theoretical analysis of biased regularized metric learning and propose an etficient way to reweight the source metric.

METRIC LEARNING

Learning how to compare objects: learn a new space where some con-
straints are fulfilled, e.g. move closer circles of the same color (class)
and keep far away circles of different colors (classes).

Mahalanobis-like Distance:

dv (x,Xx') = \/(X — x)TM(x — x’), M a PSD matrix.

Link with some well-known distances:

e Fuclidean Distance: M =1
e Original Mahalanobis Distance: M = X!
e /Zcro Distance: M =0

BIASED REGULARIZED METRIC LEARNING

Let || - || be the Frobenius norm, Mg is a fixed metric biasing the
regularization, we consider the following optimization problem w.r.t.
a learning sample T' = {z; = (x;, ;) }._; C (X x V)"

arg min Ly (M) 4+ A\||M — Mg||% (1)
M =0

where Lr(M) =, o (M, z,2") stands for the empirical risk with
[((M, z,z") a convex, (o, m)-admissible and k-lipschitz loss.

(0, m)-admissibility: |I[(M, z1,2z2) — (M, z3,24)| < 0 |y1y2 — y3ya| + m
k-lipschitz continuity: [[(M,z,z") — I(M',z,2z")| < k||M — M'|| ~

We use the following loss in the experiments:

Z(M7 Z. Z/) — [yy’((x o X/)TM(X - X/) o ’Vyy’)] i (2)

where -], is the hinge loss, yy’ = 1 for examples of the same class and
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Definition 1 (On-average-replace-two-stability). Let ¢ : N — R be
monotonically decreasing and let U(n) be the uniform distribution over
{1...n}. A metric learning algorithm is on-average-replace-two-stable
with rate e(n) if for every distribution D :

{Z(M”*,z%zj)—l(M*,z",zf’) <

, T~D+" e(n)
i,g~U(n)
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where M™, respectively M”*, 1$ the optimal solution when learning with
the training set T, respectively T . T is obtained by replacing zt, the
it example of T, by z; to get a training set T and then by replacing
zJ | the jt" example of T*, by zs.

UNIFORM STABILITY ANALYSIS: AN

Definition 2 (Uniform stability [JWZ09]). An al-
gorithm has a uniform stability in e(n) if Vi,

[ J

D, an algorithm solving optimization problem (1) has a uniform stability in e(n) =

TTER THAN THE SOURCE ON]
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Theorem 1 (On-average-replace-two-stability). Given a training sam-

ple T of size n drawn 1.1.d. from D+, an algorithm solving optimization
8k*

problem (1) is on-average-replace-two-stable with e(n) = -

Theorem 2 (On average bound). For any convex, k-lipschitz loss, we
have:

k2
AN

where the expected value 1s taken over size-n training sets.

i~ [Lpr(M”)] < Lp,(Ms) 4

ALGORITHM SOLVING PROBLEM (1) IS CONSISTENT
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Theorem 3 (Uniform stability). Given a training sample T' of n examples drawn i.i.d. from

4k?
An °

Sup
z,2' ~' D

where M™ s the matriz learned on the training set loss, we have:

T and M*" is the matriz learned on the training set
T obtained by replacing the it" example of T by a
new independent one.

SPECIFIC LLOSS ANALYSIS

Theorem 5 (Generalization bound). With probability 1 — 0 for any
matriz M* learned by an algorithm solving optimization problem (1)
L1 (Ms)

with loss (2), we have:

LM*<LM*4\/ - |V s Lo
pr(M") < Lp(M™) + )\ | Msl|z + ¢y o o
where ¢, 1s a constant linked to the k-lipschitz property of the loss and

the chosen margins.

—1 otherwise and +,,  1s the chosen margin.
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Optimizing the influence of the source by reweighting

Let C(Mg) = \/LT(;VIS) - [Mg|| 7, let Ms = SMgsource we search
(£ such that:

5* — arggnin C(ﬁMSOURCE) (3)

The goal is to minimize the right hand side of the bound, i.e. to choose
the best matrix to transfer.

Lo, (M) < Ly(M™) + (40 4+ 2m + ¢)

[(M*,z,2") — Z(Mi*,zazl) < €(n) Theorem 4 (Generalization bound). With probability 1 — §, for any matriz M* learned
with an €(n) uniformly stable algorithm and for any convex, k-lipschitz and (o, m)-admissible
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where ¢ s a constant linked to the k-lipschitz property of the loss and e(n) appears in O ( )

EXPERIMENTS
Interest of optimizing § (UCI datasets):
Baselines Solving optimization problem (1) with loss (2)
Dataset I-NN TTML Ms = 51 Ms=1 | Ms=82 1 | Mg=%"1
Breast | 95.31 & 1.11 | 95.40 &£ 1.37 | 96.06 + 0.77 | 95.75 + 0.87 | 95.71 + 0.84 | 94.76 + 1.38
Pima | 67.92 = 1.95 | 68.13 £ 1.86 | 67.87 & 1.57 | 67.54 £ 1.99 | 68.37 & 2.00 | 66.31 £ 2.37
Scale | 78.73 £ 1.69 | 87.31 + 2.35 | 80.98 + 1.51 | 80.82 £ 1.27 | 81.35 & 1.17 | 80.88 & 1.43
Wine | 93.40 £ 2.70 | 93.82 £ 2.63 | 95.42 & 1.71 | 95.07 £ 1.68 | 94.31 £ 2.01 | 80.56 & 5.75

Application to a transfer learning task (Office-Caltech dataset):

: : Solving optimization problem (1) with loss (2)
Baselines (using source examples) : .
(using the source metric but no source examples)
Task ].—NNS MMDT GFK MS = 52_1 M.S = 5MITML MS = ﬁMLMNN

A—C 35.95 = 1.30 | 39.76 &+ 2.25 | 37.81 = 1.85 | 32.65 = 3.76 32.93 + 4.60 34.66 = 3.66
A—D 33.98 £ 4.37 54.25 £+ 4.32 51.54 £ 3.55 | 54.69 £ 3.96 51.54 £+ 4.03 54.72 + 5.00
A—- W | 33.68 &+ 3.60 64.91 4+ 5.71 59.36 = 4.30 | 67.11 & 5.11 64.09 + 5.20 67.62 + 5.18
C— A 37.37 £ 2.95 | 51.05 + 3.38 | 46.36 + 2.94 | 50.15 + 4.87 49.89 + 5.25 50.36 &= 4.67
C—D 31.89 £ 5.77 52.80 £ 4.84 | 58.07 £ 3.90 | 56.77 =+ 4.63 53.78 £ 7.23 57.44 £+ 4.48
C— W | 28.60 + 6.13 62.75 £ 5.19 63.26 = 5.89 | 64.64 £+ 6.44 64.00 £ 6.08 65.11 + 5.25
D— A | 3359+ 1.77 | 50.39 + 3.40 | 40.77 + 2.55 | 49.48 + 4.41 49.11 + 4.09 49.67 £ 4.00
D — C 31.16 = 1.19 | 35.70 = 3.25 | 30.64 = 1.98 | 32.90 & 3.14 32.99 = 3.58 33.84 = 2.99
D—W | 76.92 + 2.18 | 74.43 £+ 3.10 74.98 £ 2.89 | 65.57 £ 4.52 66.38 = 6.04 69.72 = 3.78
W — A | 32.19 4+ 3.04 50.96 £ 3.66 43.26 £ 2.34 | 50.80 = 3.63 50.16 £ 4.32 50.92 + 4.00
W — C | 27.67 4+ 2.58 | 34.86 + 3.62 | 29.95 4+ 3.05 | 31.54 &+ 3.60 31.40 £+ 4.29 32.64 £+ 3.52
W — D | 64.61 + 4.30 62.52 £4.40 | 71.93 £ 4.07 | 57.17 + 6.50 56.85 £ 5.01 61.14 £+ 5.78
Mean 38.93 + 3.26 | 52.83 4+ 3.93 | 50.66 + 3.28 | 51.12 4 4.55 50.26 £ 5.02 52.32 £+ 4.36




