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Objectives: Provide a theoretical analysis of biased regularized metric learning and propose an efficient way to reweight the source metric.

Metric Learning
Learning how to compare objects: learn a new space where some con-
straints are fulfilled, e.g. move closer circles of the same color (class)
and keep far away circles of different colors (classes).

Learning step

Mahalanobis-like Distance:

dM(x,x′) =
√

(x− x′)TM(x− x′), M a PSD matrix.

Link with some well-known distances:

• Euclidean Distance: M = I

• Original Mahalanobis Distance: M = Σ−1

• Zero Distance: M = 0

Biased Regularized Metric Learning
Let ‖ · ‖F be the Frobenius norm, MS is a fixed metric biasing the
regularization, we consider the following optimization problem w.r.t.
a learning sample T = {zi = (xi, yi)}ni=1 ⊂ (X × Y)

n
:

arg min
M�0

LT (M) + λ‖M−MS‖2F (1)

where LT (M) =
∑

z,z′∈T l(M, z, z′) stands for the empirical risk with
l(M, z, z′) a convex, (σ,m)-admissible and k-lipschitz loss.
(σ,m)-admissibility: |l(M, z1, z2)− l(M, z3, z4)| ≤ σ |y1y2 − y3y4|+m

k-lipschitz continuity: |l(M, z, z′)− l(M′, z, z′)| ≤ k‖M−M′‖F

We use the following loss in the experiments:

l(M, z, z′) =
[
yy′((x− x′)TM(x− x′)− γyy′)

]
+

(2)

where [·]+ is the hinge loss, yy′ = 1 for examples of the same class and
−1 otherwise and γyy′ is the chosen margin.

On Average Analysis: The learned metric is better than the source one

Definition 1 (On-average-replace-two-stability). Let ε : N → R be
monotonically decreasing and let U(n) be the uniform distribution over
{1 . . . n}. A metric learning algorithm is on-average-replace-two-stable
with rate ε(n) if for every distribution DT :

E T∼DT
n

i,j∼U(n)
z1,z2∼DT

[
l(Mij

∗
, zi, zj)− l(M∗, zi, zj)

]
≤ ε(n)

where M∗, respectively Mij
∗
, is the optimal solution when learning with

the training set T , respectively T i
j
. T i

j
is obtained by replacing zi, the

ith example of T , by z1 to get a training set T i and then by replacing
zj, the jth example of T i, by z2.

Theorem 1 (On-average-replace-two-stability). Given a training sam-
ple T of size n drawn i.i.d. from DT , an algorithm solving optimization

problem (1) is on-average-replace-two-stable with ε(n) = 8k2

λn .

Theorem 2 (On average bound). For any convex, k-lipschitz loss, we
have:

ET∼DT n [LDT (M∗)] ≤ LDT (MS) +
8k2

λn

where the expected value is taken over size-n training sets.

Uniform Stability Analysis: An algorithm solving problem (1) is consistent

Definition 2 (Uniform stability [JWZ09]). An al-
gorithm has a uniform stability in ε(n) if ∀i,

sup
z,z′∼DT

∣∣∣l(M∗, z, z′)− l(Mi∗, z, z′)
∣∣∣ ≤ ε(n)

where M∗ is the matrix learned on the training set
T and Mi∗ is the matrix learned on the training set
T i obtained by replacing the ith example of T by a
new independent one.

Theorem 3 (Uniform stability). Given a training sample T of n examples drawn i.i.d. from

DT , an algorithm solving optimization problem (1) has a uniform stability in ε(n) = 4k2

λn .

Theorem 4 (Generalization bound). With probability 1 − δ, for any matrix M∗ learned
with an ε(n) uniformly stable algorithm and for any convex, k-lipschitz and (σ,m)-admissible
loss, we have:

LDT (M∗) ≤ LT (M∗) + (4σ + 2m+ c)

√
ln 2

δ

2n
+O

(
1

n

)
where c is a constant linked to the k-lipschitz property of the loss and ε(n) appears in O

(
1
n

)
.

Specific Loss Analysis
Theorem 5 (Generalization bound). With probability 1 − δ for any
matrix M∗ learned by an algorithm solving optimization problem (1)
with loss (2), we have:

LDT (M∗) ≤ LT (M∗) + 4

(√
LT (MS)

λ
+ ‖MS‖F + cγ

)√
ln 2

δ

2n
+O

(
1

n

)
where cγ is a constant linked to the k-lipschitz property of the loss and
the chosen margins.

Optimizing the influence of the source by reweighting

Let C(MS) =
√

LT (MS)
λ + ‖MS‖F , let MS = βMSOURCE we search

β such that:

β∗ = arg min
β

C(βMSOURCE) (3)

The goal is to minimize the right hand side of the bound, i.e. to choose
the best matrix to transfer.

Experiments
Interest of optimizing β (UCI datasets):

Baselines Solving optimization problem (1) with loss (2)
Dataset 1-NN ITML MS = βI MS = I MS = βΣ−1 MS = Σ−1

Breast 95.31 ± 1.11 95.40 ± 1.37 96.06 ± 0.77 95.75 ± 0.87 95.71 ± 0.84 94.76 ± 1.38
Pima 67.92 ± 1.95 68.13 ± 1.86 67.87 ± 1.57 67.54 ± 1.99 68.37 ± 2.00 66.31 ± 2.37
Scale 78.73 ± 1.69 87.31 ± 2.35 80.98 ± 1.51 80.82 ± 1.27 81.35 ± 1.17 80.88 ± 1.43
Wine 93.40 ± 2.70 93.82 ± 2.63 95.42 ± 1.71 95.07 ± 1.68 94.31 ± 2.01 80.56 ± 5.75

Application to a transfer learning task (Office-Caltech dataset):
Baselines (using source examples)

Solving optimization problem (1) with loss (2)
(using the source metric but no source examples)

Task 1-NNS MMDT GFK MS = βΣ−1 MS = βMITML MS = βMLMNN

A → C 35.95 ± 1.30 39.76 ± 2.25 37.81 ± 1.85 32.65 ± 3.76 32.93 ± 4.60 34.66 ± 3.66
A → D 33.58 ± 4.37 54.25 ± 4.32 51.54 ± 3.55 54.69 ± 3.96 51.54 ± 4.03 54.72 ± 5.00
A → W 33.68 ± 3.60 64.91 ± 5.71 59.36 ± 4.30 67.11 ± 5.11 64.09 ± 5.20 67.62 ± 5.18
C → A 37.37 ± 2.95 51.05 ± 3.38 46.36 ± 2.94 50.15 ± 4.87 49.89 ± 5.25 50.36 ± 4.67
C → D 31.89 ± 5.77 52.80 ± 4.84 58.07 ± 3.90 56.77 ± 4.63 53.78 ± 7.23 57.44 ± 4.48
C → W 28.60 ± 6.13 62.75 ± 5.19 63.26 ± 5.89 64.64 ± 6.44 64.00 ± 6.08 65.11 ± 5.25
D → A 33.59 ± 1.77 50.39 ± 3.40 40.77 ± 2.55 49.48 ± 4.41 49.11 ± 4.09 49.67 ± 4.00
D → C 31.16 ± 1.19 35.70 ± 3.25 30.64 ± 1.98 32.90 ± 3.14 32.99 ± 3.58 33.84 ± 2.99
D → W 76.92 ± 2.18 74.43 ± 3.10 74.98 ± 2.89 65.57 ± 4.52 66.38 ± 6.04 69.72 ± 3.78
W → A 32.19 ± 3.04 50.56 ± 3.66 43.26 ± 2.34 50.80 ± 3.63 50.16 ± 4.32 50.92 ± 4.00
W → C 27.67 ± 2.58 34.86 ± 3.62 29.95 ± 3.05 31.54 ± 3.60 31.40 ± 4.29 32.64 ± 3.52
W → D 64.61 ± 4.30 62.52 ± 4.40 71.93 ± 4.07 57.17 ± 6.50 56.85 ± 5.51 61.14 ± 5.78
Mean 38.93 ± 3.26 52.83 ± 3.93 50.66 ± 3.28 51.12 ± 4.55 50.26 ± 5.02 52.32 ± 4.36
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