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Université de Bretagne Sud,
IRISA, UMR 6074, CNRS,
courty@univ-ubs.fr
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Abstract

We are interested in the computation of the transport map of an Optimal Transport
problem. Most of the computational approaches of Optimal Transport use the
Kantorovich relaxation of the problem to learn a probabilistic coupling γ but do
not address the problem of learning the underlying transport map T linked to
the original Monge problem. Consequently, it lowers the potential usage of such
methods in contexts where out-of-samples computations are mandatory. In this
paper we propose a new way to jointly learn the coupling and an approximation of
the transport map. We use a jointly convex formulation which can be efficiently
optimized. Additionally, jointly learning the coupling and the transport map allows
to smooth the result of the Optimal Transport and generalize it to out-of-samples
examples. Empirically, we show the interest and the relevance of our method in
two tasks: domain adaptation and image editing.

1 Introduction

In recent years Optimal Transport (OT) [1] has received a lot of attention in the machine learning
community [2, 3, 4, 5]. This gain of interest comes from several nice properties of OT when used
as a divergence to compare discrete distributions: (i) it provides a sound and theoretically grounded
way of comparing multivariate probability distributions without the need for estimating parametric
versions and (ii) by considering the geometry of the underlying space through a cost metric, it can
encode useful information about the nature of the problem.

OT is usually expressed as an optimal cost functional but it also enjoys a dual variational formula-
tion [1, Chapter 5]. It has been proven useful in several settings. As a first example it corresponds to
the Wasserstein distance in the space of probability distributions. Using this distance it is possible to
compute means and barycentres [6, 7] or to perform a PCA in the space of probability measures [8].
This distance has also been used in subspace identification problems for analysing the differences
between distributions [9], in graph based semi-supervised learning to propagate histogram labels
across nodes [4] or as a way to define a loss function for multi-label learning [5]. As a second example
OT enjoys a variety of bounds for the convergence rate of empirical to population measures which can
be used to derive new probabilistic bounds for the performance of unsupervised learning algorithms
such as k-means [2]. As a last example OT is a mean of interpolation between distributions [10] that
has been used in Bayesian inference [11], color transfer [12] or domain adaptation [13].

On the computational side, despite some results with finite difference schemes [14], one of the major
gain is the recent development of regularized versions that leads to efficient algorithms [3, 7, 15]. Most
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OT formulations are based on the computation of a (probabilistic) coupling matrix that can be seen
as a bi-partite graph between the bins of the distributions. This coupling, also called transportation
matrix, corresponds to an empirical transport map which suffers from some drawbacks: it can only be
applied to the examples used to learn it. In other words when a new dataset (or sample) is available,
one has to recompute an OT problem to deal with the new instances which can be prohibitive for some
applications in particular when the task is similar or related. From a machine learning standpoint, this
also means that we do not know how to find a good approximation of a transport map computed from
a small sample that can be generalized to unseen data. This is particularly critical when one considers
medium or large scale applications such as image editing problems. In this paper, we propose to
bridge this gap by learning an explicit transformation that can be interpreted as a good approximation
of the transport map. As far as we know, this is the first approach that addresses directly this problem
of out-of-sample mapping.

Our formulation is based on classic regularized regression and admits two appealing interpretations.
On the one hand, it can be seen as learning a transformation regularized by a transport map. On the
other hand, we can see it as the computation of the transport map regularized w.r.t. the definition
of a transformation (e.g. linear, non-linear, . . . ). This results in an optimization problem that
jointly learns both the transport map and the transformation. This formulation can be efficiently
solved thanks to alternating block-coordinate descent and actually benefits the two models: (i) we
obtain smoother transport maps that must be compliant with a transformation that can be used on
out-of-sample examples and (ii) the transformation is able to take into account some geometrical
information captured by OT. See Figure 1 for an illustration. We provide some empirical evidence for
the usefulness of our approach in domain adaptation and image editing. Beyond that, we think that
this paper can open the door to new research on the generalization ability of OT.

The rest of the paper is organized as follows. Section 2 introduces some notations and preliminaries
in optimal transport. We present our approach in Section 3. Our experimental evaluation is given in
Section 4 and we conclude in Section 5.

2 Background

Monge problem Let ΩS ∈ Rds and ΩT ∈ Rdt be two separable metric spaces such that any
probability measure on ΩS , respectively ΩT , is a Radon measure. By considering a cost function
c : ΩS × ΩT → [0,∞[, Monge’s formulation of the OT problem is to find a transport map
T : ΩS → ΩT (also known as a push-forward operator) between two probability measures µS on
ΩS and µT on ΩT realizing the infimum of the following function:

inf

{∫

ΩS

c(x, T (x))dµS(x), T#µS = µT

}
. (1)

When reaching this infimum, the corresponding map T is an optimal transport map. It associates one
point from ΩS to a single point in ΩT . Therefore, the existence of this map is not always guaranteed,
as when for example µS is a Dirac and µT is not. As such, the existence of solutions for this problem
can in general not be established when µS and µT are supported on a different number of Diracs. Yet,
in a machine learning context, data samples usually form discrete distributions, but can be seen as
observations of a regular, continuous (with respect to the Lebesgue measure) underlying distribution,
thus fulfilling existence conditions (see [1, Chapter 9]). As such, assuming the existence of T calls
for a relaxation of the previous problem.

Kantorovich relaxation The Kantorovitch formulation of OT [16] is a convex relaxation of the
Monge problem. Let us define Π as the set of all probabilistic couplings in P(ΩS × ΩT ), the space
of all joint distributions with marginals µS and µT . The Kantorovitch problem seeks for a general
coupling γ ∈ Π between ΩS and ΩT :

γ0 = arg min
γ∈Π

∫

ΩS×ΩT

c(xs,xt)dγ(xs,xt). (2)

The optimal coupling always exists [1, Theorem 4.1]. This leads to a simple formulation of the
OT problem in the discrete case, i.e. whenever µS and µT are only accessible through discrete
samples Xs = {xsi}ns

i=1, and Xt = {xti}nt
i=1. The corresponding empirical distributions can be

written as µ̂S =
∑ns

i=1 p
s
i δxs

i
and µ̂T =

∑nt

i=1 p
t
iδxt

i
where δx is the Dirac function at location
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Figure 1: Illustration of the mappings estimated on the clown dataset with a linear (top) and nonlinear
(bottom) mapping (best viewed in color).

x ∈ Ω. psi and pti are probability masses associated to the i-th sample and belong to the probability
simplex, i.e.

∑ns

i=1 p
s
i =

∑nt

i=1 p
t
i = 1. Let Π̂ be the set of probabilistic couplings between the two

empirical distributions defined as Π̂ =
{
γ ∈ (R+)ns×nt | γ1nt

= µ̂S , γT1ns
= µ̂T

}
where 1n is a

n-dimensional vector of ones. Problem 2 becomes:

γ0 = arg min
γ∈Π̂

〈γ,C〉F , (3)

where 〈·, ·〉F is the Frobenius dot product1 and C ≥ 0 is the cost matrix related to the function c.

Barycentric mapping Once the probabilistic coupling γ0 has been computed, one needs to map
the examples from ΩS to ΩT . This mapping can be conveniently expressed with respect to the set of
examples Xt as the following barycentric mapping [11, 13, 12]:

x̂si = arg min
x∈ΩT

nt∑

j=1

γ0(i, j)c(x,xtj), (4)

where xsi is a given source sample and x̂si is its corresponding image. When the cost function is the
squared `2 distance, i.e. c(x,x′) = ‖x− x′‖22, this barycentre corresponds to a weighted average
and the sample is mapped into the convex hull of the target examples. For all source samples, this
barycentric mapping can therefore be expressed as:

X̂s = Bγ0(Xs) = diag(γ01nt
)−1γ0Xt. (5)

In the rest of the paper we will focus on a uniform sampling, i.e. the examples are drawn i.i.d.
from µS and µT , whence X̂s = nsγ0Xt. The main drawback of the mapping (5) is that it does not
allow the projection of out-of-sample examples which do not have been seen during the learning
process of γ0. It means that to transport a new example xs ∼ ΩS one has to compute the coupling
matrix γ0 again using this new example. Also, while some authors consider specific regularization of
γ [3, 13] to control the nature of the coupling, inducing specific properties of the transformation T
(i.e. regularity, divergence free, etc.) is hard to achieve.

In the next section we present a relaxation of the OT problem, which consists in jointly learning γ and
T . We derive the corresponding optimization problem, and show its usefulness in specific scenarios.

3 Contributions

3.1 Joint learning of T and γ

In this paper we propose to solve the problem of optimal transport by jointly learning the matrix γ
and the transformation function T . First of all, we denoteH the space of transformations from ΩT

1〈A,B〉F = Tr(ATB)
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to ΩT and using a slight abuse of notations Xs and Xt are matrices where each line is an example
respectively drawn from ΩS and ΩT . We propose the following optimisation problem:

arg min
T∈H,γ∈Π̂

f(γ, T ) =
1

nsdt
‖T (Xs)− nsγXt‖2F +

λγ
max(C)

〈γ,C〉F +
λT
dsdt

R(T ) (6)

where T (Xs) is a short-hand for the application of T on each example in Xs, R(·) is a regularization
term on T and λγ , λT are hyper-parameters controlling the trade-off between the three terms in the
optimization problem. The first term in (6) depends on both T and γ and controls the closeness
between the transformation induced by T and the barycentric interpolation obtained from γ. The
second term only depends on γ and corresponds to the standard optimal transport loss. The third term
regularizes T to ensure a better generalization.

A standard approach to solve problem (6) is to use block-coordinate descent (BCD) [17], where the
idea is to alternatively optimize for T and γ. In the next theorem we show that under some mild
assumptions on the regularization term R(·) and the function spaceH this problem is jointly convex.
Note that in this case we are guaranteed to converge to the optimal solution only if we are strictly
convex w.r.t. T and γ. While this is not the case for γ, the algorithm works well in practice and
a small regularization term can be added if theoretical convergence is required. The proof of the
following theorem can be found in the supplementary.
Theorem 1. LetH be a convex space and R(·) be a convex function. Problem (6) is jointly convex
in T and γ.

As discussed above we propose to solve optimization problem (6) using a block coordinate descent
approach. As such we need to find an efficient way to solve: (i) for γ when T is fixed and (ii) for
T when γ is fixed. To solve the problem w.r.t. γ with a fixed T , a common approach is to use the
Frank-Wolfe algorithm [12, 18]. It is a procedure for solving any convex constrained optimization
problem with a convex and continuously differentiable objective function over a compact convex
subset of any vector space. This algorithm can find an ε approximation of the optimal solution in
O(1/ε) iterations [19]. A detailed algorithm is given in the supplementary material. In the next
section we discuss the solution of the minimization w.r.t. T with fixed γ for different functional
spaces.

3.2 ChoosingH

In the previous subsection we presented our method when considering a general set of transformations
H. In this section we propose several possibilities for the choice of a convex setH. On the one hand,
we propose to defineH as a set of linear transformations from ΩS to ΩT . On the other hand, using
the kernel trick, we propose to consider non-linear transformations. A summary of the approach can
be found in Algorithm 1.

Linear transformations A first way to defineH is to consider linear transformations induced by a
ds × dt real matrix L:

H =
{
T : ∃ L ∈ Rd

s×dt ,∀xs ∈ ΩS , T (xs) = xsTL
}

. (7)

Furthermore, we define R(T ) = ‖L− I‖2F where I is the identity matrix. We choose to bias L
toward I in order to ensure that the examples are not moved too far away from their initial position.
In this case we can rewrite optimization problem (6) as:

arg min
L∈Rds×dt ,γ∈Π̂

1

nsdt
‖XsL− nsγXt‖2F +

λγ
max(C)

〈γ,C〉F +
λT
dsdt

‖L− I‖2F . (8)

According to Algorithm 1 a part of our procedure requires to solve optimization problem (8) when γ
is fixed. One solution is to use the following closed form for L:

L =

(
1

nsdt
XT
sXs +

λT
dsdt

I

)−1(
1

nsdt
XT
s nsγXt +

λT
dsdt

I

)
(9)

where (·)−1 is the matrix inverse (Moore-Penrose pseudo-inverse when the matrix is singular). In the
previous definition ofH, we considered non biased linear transformations. However it is sometimes
desirable to add a bias to the transformation. The equations being very similar in spirit to the non
biased case we refer the interested reader to the supplementary material.
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Algorithm 1: Joint Learning of L and γ.
input :Xs,Xt source and target examples and λγ , λT hyper parameters.
output :L, γ.

1 begin
2 Initialize k = 0, γ0 ∈ Π̂ and L0 = I
3 repeat
4 Learn γk+1 solving problem (6) with fixed Lk using a Frank-Wolfe approach.
5 Learn Lk+1 using Equation (9), (12) or their biased counterparts with fixed γk+1.
6 Set k = k + 1.
7 until convergence

Non-linear transformations In some cases a linear transformation is not sufficient to approximate
the transport map. Hence, we propose to consider non-linear transformations. Let φ be a non-linear
function associated to a kernel function k : ΩS ×ΩS → R such that k(xs,xs′) =

〈
φ(xs), φ(xs′)

〉
H,

we can defineH for a given set of examples Xs as:

H =
{
T : ∃ L ∈ Rn

s×dt∀xs ∈ ΩS , T (xs) = kXs
(xsT )L

}
(10)

where kXs(xsT ) is a short-hand for the vector
(
k(xs,xs1) k(xs,xs2) · · · k(xs,xsns

)
)

where
xs1, · · · ,xsns

∈ Xs. In this case optimization problem (6) becomes:

arg min
L∈Rns×dt ,γ∈Π̂

1

nsdt
‖kXs(Xs)L− nsγXt‖2F +

λγ
max(C)

〈γ,C〉F +
λT
nsdt

‖kXs(·)L‖2F . (11)

where kXs
(·) is a short-hand for the vector

(
k(·,xs1) · · · k(·,xsns

)
)

=
(
φ(xs1) · · · φ(xsns

)
)
.

As in the linear case there is a closed form solution for L when γ is fixed:

L =

(
1

nsdt
kXs(Xs) +

λT
d2

I

)−1
1

nsdt
nsγXt. (12)

As in the linear case it might be interesting to use a bias (Presented in the supplementary material).

3.3 Discussion on the quality of the transport map approximation

In this section we propose to discuss some theoretical considerations about our framework and more
precisely on the quality of the learned transformation T . To assess this quality we consider the
Frobenius norm between T and the true transport map, denoted T ∗, that we would obtain if we could
solve Monge’s problem. Let Bγ̂ be the empirical barycentric mapping of Xs using the probabilistic
coupling γ̂ learned between Xs and Xt. Similarly let Bγ0 be the theoretical barycentric mapping
associated with the probabilistic coupling γ0 learned on µS , µT the whole distributions and which
corresponds to the solution of Kantorovich’s problem. Using a slight abuse of notations we denote by
Bγ̂(xs) and Bγ0(xs) the projection of xs ∈ Xs by these barycentric mappings. Using the triangle
inequality, some standard properties on the square function, the definition ofH and [20, Theorem 2],
we have with high probability that (See the supplementary material for a justification):

E
xs∼ΩS

‖T (xs)− T ∗(xs)‖2F ≤ 4
∑

xs∈Xs

‖T (xs)−Bγ̂(xs)‖2F +O
(

1√
ns

)

+ 4
∑

xs∈Xs

‖Bγ̂(xs)−Bγ0(xs)‖2F + 2 E
xs∼ΩS

‖Bγ0(xs)− T ∗(xs)‖2F . (13)

From Inequality 13 we assess the quality of the learned transformation T w.r.t. three key quanti-
ties. The first quantity,

∑
xs∈Xs

‖T (xs)−Bγ̂(xs)‖2F , is a measure of the difference between the
learned transformation and the empirical barycentric mapping. We minimize it in Problem (6). The
second and third quantities are theoretical and hard to bound because, as far as we know, there
is a lack of theoretical results related to these terms in the literature. Nevertheless, we expect∑

xs∈Xs
‖Bγ̂(xs)−Bγ0(xs)‖2F to decrease uniformly with respect to the number of examples as it

corresponds to a measure of how well the empirical barycentric mapping estimates the theoretical
one. Similarly, we expect Exs∼ΩS ‖Bγ0(xs)− T ∗(xs)‖2F to be small as it characterizes that the
theoretical barycentric mapping is a good approximation of the true transport map. This depends of
course on the expressiveness of the set H considered. We think that this discussion opens up new
theoretical perspectives for OT in Machine Learning but these are beyond the scope of this paper.
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Table 1: Accuracy on the Moons dataset. Color-code: the darker the result, the better.

Angle 1NN GFK SA OT L1L2 OTE OTLin OTLinB OTKer OTKerB

T γ T γ T γ T γ

10 100.0 99.9 100.0 97.9 99.6 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
20 93.1 95.8 93.1 95.0 98.7 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
30 84.0 92.5 84.0 90.6 98.4 100.0 99.8 99.9 99.8 99.9 100.0 100.0 100.0 100.0
40 77.1 90.8 74.4 83.7 95.8 100.0 98.3 98.7 98.1 98.5 99.7 99.7 99.6 99.7
50 61.7 90.2 73.1 77.8 87.7 87.3 97.8 97.6 97.5 97.5 99.1 99.2 99.1 99.1
60 41.2 79.4 72.3 71.0 88.3 86.3 96.4 97.2 95.8 97.0 96.6 96.8 96.6 96.8
70 23.1 61.0 72.3 64.5 89.0 77.5 88.0 94.7 88.2 94.3 80.8 81.5 82.5 83.1
80 20.7 36.2 72.3 57.3 73.6 58.8 76.9 81.0 76.6 80.7 74.0 74.1 73.9 74.2
90 19.4 43.1 34.2 51.0 58.1 51.3 67.9 68.0 67.1 68.1 56.3 55.8 57.6 55.4

4 Experiments

4.1 Domain Adaptation

Datasets We consider two domain adaptation (DA) datasets, namely Moons [21] and Office-
Caltech [22]. The Moons dataset is a binary classification task where the source domain corresponds
to two intertwined moons, each one representing a class. The target domain is built by rotating the
source domain with an angle ranging from 10 to 90 degrees. It leads to 9 different adaptation tasks
of increasing difficulty. The examples are two dimensional and we consider 300 source and target
examples for training and 1000 target examples for testing. The Office-Caltech dataset is a 10 class
image classification task with 4 domains corresponding to images coming from different sources:
amazom (A), dslr (D), webcam (W) and Caltech10 (C). There are 12 adaptation tasks where each
domain is in turn considered as the source or the target (denoted source → target). To represent
the images we use the deep learning features of size 4096 named decaf6 [23]. During the training
process we consider all the examples from the source domain and half of the examples from the target
domain, the other half being used as the test set.

Methods We consider 6 baselines. The first one is a simple 1-Nearest-Neighbour (1NN) using
the original source examples only. The second and third ones are two widely used DA approaches,
namely Geodesic Flow Kernel (GFK) [22] and Subspace Alignment (SA) [24]. The fourth to sixth
baselines are OT based approaches: the classic OT method (OT), OT with entropy based regularization
(OTE) [3] and OT with `1`2 regularization (L1L2) [13]. We present the results of our approach with
the linear (OTLin) and kernel (OTKer) versions of T and their biased counterpart (*B). For OT based
methods the idea is to (i) compute the transport map between the source and the target, (ii) project
the source examples and (iii) classify the target examples using a 1NN on the projected source.

Experimental Setup We consider the following experimental setup for all the methods and datasets.
All the results presented in this section are averaged over 10 trials. For each trial we consider three
sets of examples, a labelled source training set denoted Xs,ys, an unlabelled target training set
denoted Xtrain

t and a labelled target testing set Xtest
t . The model is learned on Xs,ys and Xtrain

t
and evaluated on Xtest

t with a 1NN learned on Xs,ys. All the hyper-parameters are tuned according
to a grid search on the source and target training instances using a circular validation procedure
derived from [21, 25] and described in the supplementary material. For GFK and SA we choose
the dimension of the subspace d ∈ {3, 6, . . . , 30}, for L1L2 and OTE we set the parameter for
entropy regularization in {10−6, 10−5, . . . , 105}, for L1L2 we choose the class related parameter
η ∈ {10−5, 10−4, . . . , 102}, for all our methods we choose λT , λγ ∈ {10−3, 10−2, . . . , 100}.
The results on the Moons and Office-Caltech datasets are respectively given in Table 1 and 2. A first
important remark is that the coupling γ and the transformation T almost always obtain the same
results. It shows that our method is able to learn a good approximation T of the transport map induced
by γ. In terms of accuracy our approach tends to give the best results. It shows that we are effectively
able to move closer the distributions in a relevant way. For the Moons dataset, the last 6 approaches
(including ours) based on OT obtain similar results until 40 degrees while the other methods fail to
obtain good results at 20 degrees. Beyond 50 degrees, our approaches give significantly better results
than the others. Furthermore they are more stable when the difficulty of the problem increases which
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Table 2: Accuracy on the Office-Caltech dataset. Color-code: the darker the result, the better.

Task 1NN GFK SA OT L1L2 OTE OTLin OTLinB OTKer OTKerB

T γ T γ T γ T γ

D →W 89.5 93.3 95.6 77.0 95.7 95.7 97.3 97.3 97.3 97.3 98.4 98.5 98.5 98.5
D → A 62.5 77.2 88.5 70.8 74.9 74.8 85.7 85.7 85.8 85.8 89.9 89.9 89.5 89.5
D → C 51.8 69.7 79.0 68.1 67.8 68.0 77.2 77.2 77.4 77.4 69.1 69.2 69.3 69.3
W → D 99.2 99.8 99.6 74.1 94.4 94.4 99.4 99.4 99.8 99.8 97.2 97.2 96.9 96.9
W → A 62.5 72.4 79.2 67.6 71.3 71.3 81.5 81.5 81.4 81.4 78.5 78.3 78.5 78.8
W → C 59.5 63.7 55.0 63.1 67.8 67.8 75.9 75.9 75.4 75.4 72.7 72.7 65.1 63.3
A→ D 65.2 75.9 83.8 64.6 70.1 70.5 80.6 80.6 80.4 80.5 65.6 65.5 71.9 71.5
A→W 56.8 68.0 74.6 66.8 67.2 67.3 74.6 74.6 74.4 74.4 66.4 64.8 70.0 68.9
A→ C 70.1 75.7 79.2 70.4 74.1 74.3 81.8 81.8 81.6 81.6 84.4 84.4 84.5 84.5
C → D 75.9 79.5 85.0 66.0 69.8 70.2 87.1 87.1 87.2 87.2 70.1 70.0 78.6 78.6
C →W 65.2 70.7 74.4 59.2 63.8 63.8 78.3 78.3 78.5 78.5 80.0 80.4 73.5 73.4
C → A 85.8 87.1 89.3 75.2 76.6 76.7 89.9 89.9 89.7 89.7 82.4 82.2 83.6 83.5

Mean 70.3 77.8 81.9 68.6 74.5 74.6 84.1 84.1 84.1 84.1 79.6 79.4 80.0 79.7

can be interpreted as a benefit from our regularization. In the supplementary material we propose
an illustration of the transformation learned by our approach. For Office-Caltech, our methods are
significantly better than other approaches which illustrates the potential of our method for difficult
tasks. To conclude, forcing OT to simultaneously learn coupling and transformation seems beneficial.

4.2 Seamless copy in images with gradient adaptation

We propose here a direct application of our mapping estimation in the context of image editing.
While several papers using OT are focusing on color adaptation [12, 26], we explore here a new
variant in the domain of image editing: the seamless editing or cloning in images. In this context, one
may desire to import a region from a given source image to a target image. As a direct copy of the
region leads to inaccurate results in the final image nearby the boundaries of the copied selection, a
very popular method, proposed by Pérez and co-workers [27], allows to seamlessly blend the target
image and the selection. This technique, coined as Poisson Image Editing, operates in the gradient
domain of the image. Hence, the gradients of the selection operate as a guidance field for an image
reconstruction based on membrane interpolation with appropriate boundary conditions extracted from
the target image (See the supplementary material for more details).

Though appealing, this technique is prone to errors due local contrast change or false colors resulting
from the integration. While some solutions combining both gradient and color domains exist [28],
this editing technique usually requires the source and target images to have similar colors and contrast.
Here, we propose to enhance the genericity of this technique by forcing the gradient distribution from
the source image to follow the gradient distribution in the target image. As a result, the seamless
cloning not only blends smoothly the copied region in the target domain, but also constraints the color
dynamics to that of the target image. Hence, a part of the style of the target image is preserved. We
start by learning a transfer function Ts→t : R6 → R6 with our method, where 6 denotes the vertical
and horizontal components of gradient per color, and we then directly solve the same system as [27].

When dealing with images, the number of source and target gradients are largely exceeding tens of
thousands and it is mandatory to consider methods that scale appropriately. As such, our technique can
readily learn the transfer function Ts→t over a limited set of gradients and generalizes appropriately
to unseen gradients. Three illustrations of this method are proposed in a context of face swapping
in Figure 2. As one can observe, the original method of Poisson image editing [27] (3rd column)
tends to preserve the color dynamics of the original image and fails in copying the style of the target
image. Our method was tested with a linear and kernel version of Ts→t, that was learned with only
500 gradients sampled randomly from both sources (λT = 10−2, λT = 103 for respectively the
linear and kernel versions, and λγ = 10−7 for both cases). As a general qualitative comment, one
can observe that the kernel version of Ts→t is better at preserving the dynamics of the gradient, while
the linear version tends to flatten the colors. In this low-dimensional space, this illustrates the need of
a non-linear transformation. Regarding the computational time, the gradient adaptation is of the same
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Figure 2: Illustrations of seamless copies with gradient adaptation. Each row is composed of the
source image, the corresponding selection zone Ω described as a binary mask, and the target image.
We compare here the two linear (4th column) and kernel (5th column) versions of the map Ts→t with
the original method of [27] (2nd column) (best viewed in color).

order of magnitude as the Poisson equation solving, and each example is computed in less than 30s
on a standard personal laptop. In the supplementary material we give other examples of the method.

5 Conclusion

In this paper we proposed a jointly convex approach to learn both the coupling γ and a transformation
T approximating the transport map given by γ. It allowed us to apply a learned transport to a set
of out-of-samples examples not seen during the learning process. Furthermore, jointly learning
the coupling and the transformation allowed us to regularize the transport by enforcing a certain
smoothness on the transport map. We also proposed several possibilities to choose H the set of
possible transformations. We presented some theoretical considerations on the generalization ability
of the learned transformation T . Hence we discussed that under the assumption that the barycentric
mapping generalizes well and is a good estimate of the true transformation, then T learned with our
method should be a good approximation of the true transformation. We have shown that our approach
is efficient in practice on two different tasks: domain adaptation and image editing.

The framework presented in this paper opens the door to several perspectives. First, from a theoretical
standpoint the bound proposed raises some questions on the generalization ability of the barycentric
mapping and on the estimation of the quality of the true barycentric mapping with respect to the target
transformation. On a more practical side, note that in recent years regularized OT has encountered a
growing interest and several methods have been proposed to control the behaviour of the transport.
As long as these regularization terms are convex, one could imagine using them in our framework.
Another perspective could be to use our framework in a mini-batch setting where instead of learning
from the whole dataset we can estimate a single function T from several couplings γ optimized on
different splits of the examples. As a last example we believe that our framework could allow the use
of the notion of OT in deep architectures as, contrary to the coupling γ, the function T can be used
on out-of-samples examples.
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1 Proof of the Joint Convexity of the Optimization Problem

We recall the optimization problem:

arg min
T∈H,γ∈Π̂

f(γ, T ) =
1

nsdt
‖T (Xs)− nsγXt‖2F +

λγ
max(C)

〈γ,C〉F +
λT
dsdt

R(T ) (1)

and the theorem:

Theorem 1. LetH be a convex space and R(·) be a convex function. Problem (1) is jointly convex
in T and γ.

Proof. First of all recall that a sum of jointly convex functions is jointly convex. Hence it is
sufficient to show that the three terms of optimization problem (1) are jointly convex. We note
f1(γ, T ) = 1

nsdt
‖T (Xs)− nsγXt‖2F , f2(γ) =

λγ
max(C) 〈γ,C〉F and f3(T ) = λT

dsdt
R(T ). f1

depends on both T and γ and controls the proximity between the transformation induced by T and the
barycentric interpolation obtained from γ. f2 only depends on γ, it corresponds to the standard term
minimized to solve the optimal transport problem. f3 regularizes T to ensure a better generalization.

Note that f2 and f3 are by construction jointly convex in γ and T . We will show that the f1 is also
jointly convex. Let g(γ, T ) = ‖T (Xs)− nsγXt‖F , we want to show that:

g(tγ1 + (t− 1)γ2, tT1 + (1− t)T2) ≤ tg(γ1, T1) + (1− t)g(γ2, T2).

We have:

‖(tT1 + (1− t)T2)(Xs)− ns(tγ1 + (t− 1)γ2)Xt‖F
(Triangle inequality and definition ofH.)

≤ ‖tT1(Xs)− tnsγ1Xt‖F + ‖(1− t)T2(Xs)− (1− t)nsγ2Xt‖F
(t ∈ [0, 1].)

= t ‖T1(Xs)− nsγ1Xt‖F + (1− t) ‖T2(Xs)− nsγ2Xt‖F
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Furthermore noting that g is convex and positive we have:

[g(tγ1 + (t− 1)γ2 , tT1 + (1− t)T2)]
2

(∀x ∈ R+, x→ x2 is non decreasing.)

≤ [tg(γ1, T1) + (1− t)g(γ2, T2)]
2

(∀x ∈ R, x→ x2 is convex.)

≤ t [g(γ1, T1)]
2

+ (1− t) [g(γ2, T2)]
2 .

Noting that f1(γ, T ) = 1
nsdt

g(γ, T )2 concludes the proof.

2 Details about Block Coordinate Descent

To solve optimization problem (1) we propose to use a block-coordinate descent approach. As such
we need to find an efficient way to solve for γ when T is fixed and to solve for T when γ is fixed.

Solving for γ with T fixed In this case we want to solve:

arg min
γ∈Π̂

f(γ, T ) =
1

nsdt
‖T (Xs)− nsγXt‖2F +

λγ
max(C)

〈γ,C〉F +
λT
dsdt

R(T ) (2)

where T is the current transformation. To solve such an optimization problem a common approach
is to use the Frank-Wolfe algorithm [1, 2]. It is a procedure for solving any convex constrained
optimization problems with a convex and continuously differentiable objective function over a
compact convex subset of any vector space. This algorithm can find an ε approximation of the optimal
solution in O(1/ε) iterations [3]. A detailed algorithm is given in Section 3.

Solving for T with γ fixed In this case we want to solve:

arg min
T∈H

f(γ, T ) =
1

nsdt
‖T (Xs)− nsγXt‖2F +

λγ
max(C)

〈γ,C〉F +
λT
dsdt

R(T ) (3)

where γ is the current mapping between the examples. The solution to this optimization problem
depends on the form ofH and R. This is discussed in detail in Section 3.2 in the main paper.

3 Detailed Frank-Wolfe algorithm

We propose in Algorithm 1 a detailed version of the Frank-Wolfe approach for solving problem (2).

Algorithm 1: Updating γ with the Frank-Wolfe algorithm.
input :The current values of γ and T .
output :The new value of γ.

1 begin
2 Initialize k = 0 and γ0 = γ
3 repeat
4 Solve Sk = argminS∈Π̂

〈
S,∇f(γk, T )

〉
F with

∇f(γ, T ) = λγ
max(C)

C− 2
nsdt

nsT (Xs)X
T
t + 2

nsdt
n2
sγXtX

T
t .

5 Find the optimal step αk satisfying the Armijo rule that minimizes f
(
(1− α)γk + αSk, T

)
.

6 Update γk+1 = (1− α)γk + αSk and k = k + 1.
7 until convergence

4 Bias including version ofH

We present the bias including version ofH both in the linear and the non-linear case.
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Biased linear transformations In the biased linear case we have:

H =

{
T : ∃ L ∈ Rd

s×dt ,∃ b ∈ Rd
t

,∀x ∈ ΩS , T (xs) = xsTL + bT =
(
xsT 1

)( L
bT

)}
.

(4)

In this case, optimization problem 1 becomes:

arg min(
L

bT

)
∈Rds+1×dt ,γ∈Π̂

1

nsdt

∥∥∥∥(Xs 1)

(
L
bT

)
− nsγXt

∥∥∥∥
2

F
+

λγ
max(C)

〈γ,C〉F +
λT
dsdt

‖L− I‖2F .

(5)

As in the non biased case, it is possible to find a closed form solution for
(

L
bT

)
when γ is fixed:

(
L
bT

)
=

(
1

nsdt

(
Xs

1T

)
(Xs 1) +

λT
dsdt

(
I 0
0T 0

))−1(
1

nsdt

(
Xs

1T

)
nsγXt +

λT
dsdt

(
I
0T

))
.

(6)

Biased non-linear transformations In the biased non-linear caseH becomes:

H =

{
T : ∃ L ∈ Rn

s×dt ,∃ b ∈ Rd
t

,∀xs ∈ ΩS , T (xs) =
(
kXs

(xsT ) 1
)( L

bT

)}
(7)

Optimization problem 1 can be rewritten as:

argmin(
L

bT

)
∈Rns+1×dt ,γ∈Π̂

1

nsdt

∥∥∥∥
(
kXs(Xs) 1

)( L
bT

)
− nsγXt

∥∥∥∥
2

F
+

λγ
max(C)

〈γ,C〉F +
λT
dsdt

‖kXs(·)L‖2F .

(8)

As in the non biased case, it is possible to find a closed form solution for
(

L
bT

)
when γ is fixed:

(
L
bT

)
=

(
1

nsdt

(
KXsXs

1T

)
(KXsXs 1) +

λT
dsdt

(
KXsXs 0
0T 0

))−1
1

nsdt

(
KXsXs

1T

)
nsγXt.

(9)

5 Proof of Equation (13) in the Main Paper

We recall the notations. Let T ∗ be the true transport map that we would obtain if we could solve
Monge’s problem. Let Bγ̂ be the empirical barycentric mapping of Xs using the probabilistic
coupling γ̂ learned between Xs and Xt. Similarly let Bγ0 be the theoretical barycentric mapping
associated with the probabilistic coupling γ0 learned on µS , µT the whole distributions and which
corresponds to the solution of Kantorovich’s problem. Using a slight abuse of notations we denote by
Bγ̂(xs) and Bγ0(xs) the projection of xs ∈ Xs by these barycentric mappings. We have that:

E
xs∼ΩS

‖T (xs)− T ∗(xs)‖2F
(Triangle inequality.)

≤ E
xs∼ΩS

(
‖T (xs)−Bγ0(x

s)‖F + ‖Bγ0(x
s)− T ∗(xs)‖F

)2

((a+ b)2 ≤ 2a2 + 2b2.)

≤ 2 E
xs∼ΩS

‖T (xs)−Bγ0(x
s)‖2F + 2 E

xs∼ΩS
‖Bγ0(x

s)− T ∗(xs)‖2F

3



Furthermore considering thatH is as proposed in the paper and using Theorem 2 in [4] we have with
high probability that:

E
xs∼ΩS

‖T (xs)− T ∗(xs)‖2F

≤ 2
∑

xs∈Xs
‖T (xs)−Bγ0(x

s)‖2F +O
(

1√
ns

)
+ 2 E

xs∼ΩS
‖Bγ0(x

s)− T ∗(xs)‖2F

(Triangle inequality.)

≤ 2
∑

xs∈Xs

(
‖T (xs)−Bγ̂(x

s)‖F + ‖Bγ̂(x
s)−Bγ0(x

s)‖F
)2

+O
(

1√
ns

)

+ 2 E
xs∼ΩS

‖Bγ0(x
s)− T ∗(xs)‖2F

((a+ b)2 ≤ 2a2 + 2b2.)

≤ 4
∑

xs∈Xs
‖T (xs)−Bγ̂(x

s)‖2F +O
(

1√
ns

)

+ 4
∑

xs∈Xs
‖Bγ̂(x

s)−Bγ0(x
s)‖2F + 2 E

xs∼ΩS
‖Bγ0(x

s)− T ∗(xs)‖2F . (10)

6 Complementary Information on Experimental Protocol for the Domain
Adaptation Experiments

Algorithm 2 explains the 2-fold circular validation used for tuning the hyper-parameters and inspired
from [5, 6]. In this algorithm M is any model able to bring closer the source and the target.
For example, with our linear mapping learned from our regularized OT formulation, we have
M(Xt) = Xt and M(Xs) = XsL.

Algorithm 2: Circular validation.
input :(Xs,ys) source examples and their labels, Xt target examples, Aλ a learning procedure using

hyper-parameters λ.
output :Average accuracy of Aλ.

1 begin
2 Split (Xs,ys) in two halves (X1

s,y
1
s) and (X2

s,y
2
s).

3 Learn M1 = Aλ(X
1
s,y

1
s ,Xt) and set y1

t the pseudo-labels of M1(Xt) obtained from a 1NN
learned on (M1(X1

s),y
1
s).

4 Set s1 the accuracy of a 1NN learned on (M1(Xt),y
1
t ) and evaluated on (M1(X2

s),y
2
s) .

5 Learn M2 = Aλ(X
2
s,y

2
s ,Xt) and set y2

t the pseudo-labels of M2(Xt) obtained from a 1NN
learned on (M2(X2

s),y
2
s).

6 Set s2 the accuracy of a 1NN learned on (M2(Xt),y
2
t ) and evaluated on (M2(X1

s),y
1
s) .

7 return s1+s2

2
.

7 Illustrations on the Moons Dataset for the Domain Adaptation
Experiments

In Figure 1 we propose some illustrations of the transformation learned by our approach on the
Moons dataset.

8 Complementary Information on Gradient Adaptation in Image Editing

In the paper, we build from a technique, denoted Poisson Image Editing, that operates in the gradient
domain of the image. Hence, the gradients of the selection operate as a guidance field for an image
reconstruction based on membrane interpolation with appropriate boundary conditions extracted from
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Original (Angle: 20)

Source: +1

Source: −1

Target: +1

Target: −1

Linear γ Linear T

Non linear γ Non linear T

Original (Angle: 50)

Source: +1

Source: −1

Target: +1

Target: −1

Linear γ Linear T

Non linear γ Non linear T

Figure 1: Illustrations of our approach on the Moons dataset when the rotation is of 20 degrees (first
and second rows) and 50 degrees (third and fourth rows). The transformation T follows closely the
transport map γ and the shapes of the two moons are well preserved. Furthermore learning a linear
transformation is better when the angle is 50 degrees. The shrinkage effect is due to the regularization
on the transformation which penalizes complex solutions.

the target image. Let f be an unknown scalar function (usually a component of the color space of
the image) defined on a given region of the image Ω. Let ft be the target image defined everywhere
apart from the interior of Ω. The Poisson editing method operates by solving for f the following
variational optimization problem with Dirichlet boundary conditions:

min
f

∫ ∫

Ω

|∇f − v|2 with f |∂Ω = ft|∂Ω. (11)

Here, v is the guidance field, which is usually given as the gradient from the source image fs over
the domain Ω, i.e. v = ∇fs|Ω. One can show that the unique solution to this problem is the solution
of the following Poisson equation [7]:

∆f = div v over Ω, with f |∂Ω = ft|∂Ω, (12)

5



Figure 2: Complementary Illustrations of seamless copies with gradient adaptation.

Figure 3: Illustration of failure of style adaptation.

where div stands for the divergence operator. Using appropriate first order discretization of the
Laplacian operator, solving for this problem amounts to solve a big sparse linear system, which can
be performed efficiently with multi-grid solvers. We propose in the paper to enhance the generality
of this technique by forcing the gradient distribution from the source image to follow the gradient
distribution in the target image. We start by learning a transfer function Ts→t : R6 → R6. We then
solve for the following system:

∆f = div Ts→t(v) over Ω, with f |∂Ω = ft|∂Ω. (13)

In Figure 2 and 3 we show other results produced by our methods. Figure 3 illustrates one particular
case of failure of style adaptation: as our method does not modify the spatial arrangement of the
gradient, it is not possible to produce the same vast swaths of colors as in the target image.
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