Objective: Study hierarchical clustering when only similarity comparisons are available, that is
without features nor explicit similarities.

Comparison-Based Machine Learning

Humans are bad at giving unbiased, quantitative information. Better at giving relative information.
Example: The left vehicles are more similar to each other than the right vehicles.

Given an unknown similarity function w, the corresponding quadruplet 1s
w (SUV left, SUV right) > w (Sport car, Tractor) .

Challenging problem: No features (coordinates), not even distances!
Given a list of quadruplets, can we solve standard machine learning tasks such as clustering?

Example: Let X' = {a:l}f\i , be a set of IV cars. Can we build a dendrogram that reflects their
similarities using only a limited set of quadruplets Q?

Existing solutions:

— Embedding based methods: Retrieve a Euclidean representation of the objects that respects the
quadruplets, then use standard machine learning methods.

— Direct methods: Algorithms that directly handle the quadruplets to solve a specific task.

Obtaining the comparisons:
— Actively: quadruplets chosen by the algorithm.

— Passively: quadruplets given to the algorithm with no way to make new queries.

input : Set of objects X = {zy,.. ., 2 n}; Cluster-level similarity 1V : 2% x 2% — R.
output: Binary tree, or dendrogram, representing a hierarchical clustering of X
begin
Let B be a collection of N singleton trees Cq, . . ., C with root nodes C;.root = {x;}.
while |B| > 1 do
Let C,C’ be the pair of trees in B for which W (C.root, C'.root) is maximum.
Create C" with C".root = {C.root U C'.root}, C".left = C, and C".right = C'.
Add C” to the collection B, and remove C, C’.
end
return The surviving element in B.
end

Algorithm 1: Agglomerative Hierarchical Clustering.

Contributions:
New algorithms for hierarchical clustering that directly use quadruplets.
Sufficient conditions to guarantee exact recovery of a planted model.

Setting

Hierarchical Clustering: Iteratively group clusters using a linkage function. Given G and G':
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Planted Model: A noisy hierarchical block matrix with L levels, oL pure clusters of size Ny and
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Expected similarities.

Hierarchical structure.

Quadruplets Kernel Average Linkage (4K-AL)

Summary: Use the quadruplets to derive a proxy for the similarities between the examples.

Kernel function: Two similar objects should behave similarly with respect to any third object.

— Active comparisons: Let w; ; be a reference similarity and S be a set of landmarks:
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— Passive comparisons: Use all the similarities as references and all the examples as landmarks:
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Quadruplets-Based Average Linkage (4—AL)

Summary: Use passive comparisons to define a cluster-level similarity function.

Cluster-level similarity: Clusters (G{, G5 are more similar to each other than GG3, G4 if their ob-
jects are, on average, more similar to each other than the objects of G35 and G4:
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Averaging over all cluster pairs gives rise to the following linkage function:
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Theory

Summary: 4K—-AL and 4-AL have better guarantees than S and CL and use less quadruplets.

Recovery Guarantees (L. = O (1))

Method Queries Number of queries Sufficient conditions Remarks
SL  Active Q (N?) 9 = (vInN) Tight!
CL  Active Q (N?) 9 = (vInN)
4K-AL Active O(NInN) g =0 (1) Near-optimal number of queries.
4K-AL Passive O (N% In N) g = 0O (1)
4-AL Passive  Q(N°InN) g = QO (1) Needs initial clusters of size () (/Np).
Experiments

Planted Model: SL and CL only recover the hierarchy for large signal to noise ratios while 4K—AL
and 4—AL exactly recover the hierarchy for smaller signal to noise ratios.

Evaluation: Average Adjusted Rand Index (AARI, higher is better).
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Code available online!

Standard Datasets: 4K—AL and 4-AL are on average better than embedding based methods.

Evaluation: Dasgupta’s cost (lower is better).
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Z.00 (100 examples, 16 features).

Glass (214 examples, 9 features).




