

Objective: Study hierarchical clustering when only similarity comparisons are available, that is without features nor explicit similarities.

Comparison-Based Machine Learning

Humans are bad at giving unbiased, quantitative information. Better at giving *relative information*. **Example:** The left vehicles are *more similar* to each other than the right vehicles.

Given an unknown similarity function w, the corresponding quadruplet is

w (SUV left, SUV right) $\ge w$ (Sport car, Tractor).

Challenging problem: No features (coordinates), not even distances! Given a list of quadruplets, can we solve standard machine learning tasks such as *clustering*? **Example:** Let $\mathcal{X} = \{x_i\}_{i=1}^N$ be a set of N cars. Can we build a dendrogram that reflects their similarities using only a limited set of quadruplets Q?

Existing solutions:

- Embedding based methods: Retrieve a Euclidean representation of the objects that respects the quadruplets, then use standard machine learning methods.
- -*Direct methods*: Algorithms that directly handle the quadruplets to solve a specific task.

Obtaining the comparisons:

- -Actively: quadruplets chosen by the algorithm.
- -*Passively*: quadruplets given to the algorithm with no way to make new queries.

New algorithms for hierarchical clustering that *directly* use quadruplets. Sufficient conditions to guarantee exact recovery of a planted model.

http://www.tml.cs.uni-tuebingen.de

Max Planck Institute for Intelligent Systems, Tübingen, Germany

Foundations of Comparison-Based Hierarchical Clustering

Debarghya Ghoshdastidar, Michaël Perrot, and Ulrike von Luxburg

Setting

Hierarchical Clustering: Iteratively group clusters using a linkage function. Given G and G': -Single Linkage (SL): $W(G, G') = \max_{x_i \in G, x_j \in G'} w_{ij}$,

- Complete Linkage (CL): $W(G, G') = \min_{x_i \in G, x_j \in G'} w_{ij}$,

- Average Linkage (AL): $W(G, G') = \sum_{x_i \in G, x_j \in G'} \frac{w_{ij}}{|G||G'|}$

Planted Model: A noisy hierarchical block matrix with L levels, 2^L pure clusters of size N_0 and signal to noise $\frac{\partial}{\sigma}$.

Hierarchical structure

Quadruplets Kernel Average Linkage (4K–AL)

Summary: Use the quadruplets to derive a proxy for the similarities between the examples. Kernel function: Two similar objects should behave similarly with respect to any third object. -Active comparisons: Let $w_{i_0 j_0}$ be a reference similarity and S be a set of landmarks:

$$K_{ij} = \sum_{k \in \mathcal{S} \setminus \{i,j\}} \left(\mathbb{I}_{\left(w_{ik} > w_{i_0 j_0}\right)} - \mathbb{I}_{\left(w_{ik} < w_{i_0 j_0}\right)} \right) \left(\mathbb{I}_{\left(w_{jk} > w_{i_0 j_0}\right)} - \mathbb{I}_{\left(w_{jk} < w_{i_0 j_0}\right)} \right)$$

– **Passive comparisons:** Use all the similarities as references and all the examples as landmarks:

$$K_{ij} = \sum_{k,l=1,k$$

Quadruplets-Based Average Linkage (4–AL)

Summary: Use passive comparisons to define a cluster-level similarity function. **Cluster-level similarity:** Clusters G_1, G_2 are more similar to each other than G_3, G_4 if their objects are, on average, more similar to each other than the objects of G_3 and G_4 :

$$\mathbb{W}_{\mathcal{Q}}(G_1, G_2 \| G_3, G_4) = \sum_{x_i \in G_1} \sum_{x_j \in G_2} \sum_{x_k \in G_3} \sum_{x_l \in G_4} \frac{\mathbb{I}_{(i,j,k,l) \in \mathcal{Q}} - \mathbb{I}_{(k,l,i,j) \in \mathcal{Q}}}{|G_1| |G_2| |G_3| |G_4|}.$$

Averaging over all cluster pairs gives rise to the following linkage function:

$$W(G_p, G_q) = \sum_{r,s=1, r \neq s}^{K} \frac{\mathbb{W}_{\mathcal{Q}}(G_p, G_q \| G_r, G_s)}{K(K-1)}$$

Expected similarities.

Method	Queries	Number of queries	Sufficient conditions	Remarks
SL	Active	$\Omega(N^2)$	$\frac{\delta}{\sigma} = \Omega\left(\sqrt{\ln N}\right)$	Tight!
CL	Active	$\Omega(N^2)$	$\frac{\delta}{\sigma} = \Omega\left(\sqrt{\ln N}\right)$	
4K–AL	Active	$\mathcal{O}\left(N\ln N ight)$	$\frac{\delta}{\sigma} = \mathcal{O}(1)$	Near-optimal number of queries.
4K–AL	Passive	$\mathcal{O}\left(N^{\frac{7}{2}}\ln N ight)$	$\frac{\delta}{\sigma} = \mathcal{O}\left(1\right)$	
4–AL	Passive	$\Omega(N^3 \ln N)$	$\frac{\delta}{\sigma} = \mathcal{O}\left(1\right)$	Needs initial clusters of size $\Omega(N_0)$.

Planted Model: SL and CL only recover the hierarchy for large signal to noise ratios while 4K–AL and 4–AL exactly recover the hierarchy for smaller signal to noise ratios. **Evaluation:** Average Adjusted Rand Index (AARI, higher is better).

Proportion of quadruplets p = 1.

Standard Datasets: 4K–AL and 4–AL are on average better than embedding based methods. **Evaluation:** Dasgupta's cost (lower is better).

MAX-PLANCK-GESELLSCHAFT

Theory

Summary: 4K–AL and 4–AL have better guarantees than SL and CL and use less quadruplets. **Recovery Guarantees** $(L = \mathcal{O}(1))$

Experiments

Code available online!